BTF/PRF:

Auflösung bis 0,025 mm

Absolut Seilzugencoder

Auflösung bis 0,025 mm

Incremental Seilzugencoder

Absolute und incrementale Seilzugencoder für Messlängen bis 50 m

Eine präzise Linearführung, wie bei anderen Längenmesssystemen, ist hierbei nicht erforderlich.

Die Wahl zwischen absoluten und incrementalen Seilzugencodern von SICK-STEGMANN ermöglicht die maßgeschneiderte Lösung für viele Anforderungsprofile.

- · SSI Schnittstelle, Profibus, CANopen oder DeviceNet Feldbustechnologie bei absoluten Seilzugencodern,
- · HTL oder TTL Schnittstelle bei incrementalen Seilzugencodern sind gängige Schnittstellen in der Automatisierungstechnik und erfüllen deren hohe Anforderungen.

Diese Produktvielfalt ermöglicht zahlreiche Einsatzmöglichkeiten z. B. in:
Kran-, Bohr- und Baggermaschinen
Pressen, Stanz- und Spritzmaschinen,
Wehranlagen und Schleusen, Hochregallager und Theaterbühnen, Lagertechnik, Holz- und Blechbearbeitungsmaschinen, im Apparatebau, der
Medizintechnik und zahlreichen
weiteren Branchen.

BKS/PKS:

Auflösung bis 0,05 mm

Absolut Seilzugencoder

Auflösung bis 0,05 mm

Incremental Seilzugencoder

Bei SICK-STEGMANN finden Sie sowohlSeilzugencoder bestehend aus Seilzugmechanik und Encoder als auch Kompaktseilzugencoder bei denen der Encoder bestens in die Seilzugmechanik integriert ist.

Die längenproportionale Anzahl der Trommelumdrehungen wird durch einen Encoder ausgezählt und in ein Messsignal umgesetzt. Dieses liefert hochauflösend Positionsbzw. Weginformationen für lineare Messstrecken, auch bei schwierigen Anbausituationen.

Seilzugencoder

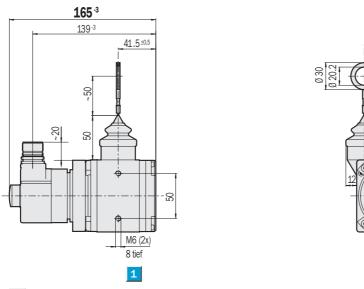
◀ Seilzugencoder helfen in schweren Baukränen, die Last sicher zu positionieren.

▼ In voll- und teilautomatisierten Verladeanlagen messen Seilzugencoder präzise die Verfahrwege.

Absoluter Seilzugencoder BTF08 SSI, Messlängen bis 3 m

Absolut-Seilzugencoder

- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

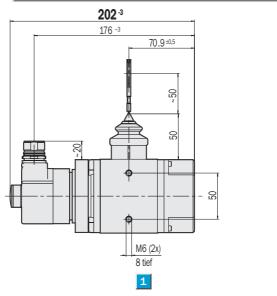


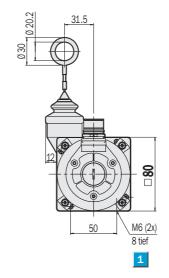
Ansicht Gerätestecker M23 am Encoder

Siehe Kapitel Zubehör Encoder-Zubehör

Maßbild Seilzugencoder BTF08 SSI, Messlänge 2 m

Gewindesackloch zur Befestigung


Allgemeintoleranzen nach DIN ISO 2768-mk


M6 (2x)

8 tief

1

Maßbild Seilzugencoder BTF08 SSI, Messlänge 3 m

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

PIN- und Aderbelegung

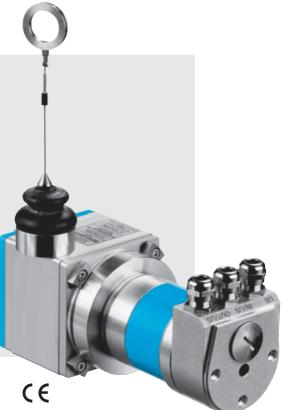
		Erklärung
	(Leitungsabgang)	
GND	blau	Masseanschluss
Data +	weiß	Schnittstellensignale
Clock +	gelb	Schnittstellensignale
$R \times D +$	grau	RS422-Programmierleitung
R x D -	grün	RS422-Programmierleitung
T x D +	rosa	RS422-Programmierleitung
T x D -	schwarz	RS422-Programmierleitung
U _s	rot	Betriebsspannung
SET	orange	elektronische Justage
Data –	braun	Schnittstellensignale
Clock -	lila	Schnittstellensignale
N. C.	orange/schwarz	Not connected
Schirm		Gehäusepotential
	Data + Clock + R x D + R x D - T x D + T x D - U _s SET Data - Clock - N. C.	GND blau Data + weiß Clock + gelb R x D + grau R x D - grün T x D + rosa T x D - schwarz U _s rot SET orange Data - braun Clock - lila N. C. orange/schwarz

Achtung! PINs, die mit N. C. bezeichnet sind, dürfen nicht belegt werden.

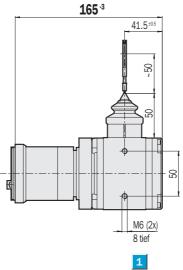
							1
Technische Daten	BTF08	SSI	SSI				
		2m	3 m				
Trommelgehäuse	Aluminium eloxiert						
Federgehäuse	Zink-Druckguss			 	 	 	
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 1,35 mm			 			
Messlänge	max. 2 m						
	max. 3 m						
Masse	ca. 1,8 kg			 			
	ca. 2,0 kg						
Codeart	25 Bit/Gray						
Codeverlauf	ansteigend in Messrichtung			 		 	
Messschritt	0,025 mm			 		 	
Linearität	typ. 0,05 %						
Wiederholbarkeit	± 1 Messschritt						
/erstellgeschwindigkeit	4 m/sec.						
Positionsbildungszeit	0,15 ms						
Federrückzugskraft (typ.)							
Anfang/Ende 1)	6 N/14 N						
Arbeitstemperaturbereich	– 20 + 70 °C						
_agerungstemperaturbereich	– 40 + 100 °C						
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen						
EMV 3)							
Viderstandsfähigkeit							
gegenüber Schocks ⁴⁾	100/6 g/ms						
gegenüber Vibration 5)	20/10 2.000 g/Hz						
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)						
	IP 67 (Encoder)						
Betriebsspannungsbereich (U _s)	10 32 V						
eistungsaufnahme max.	0,8 W						
nitialisierungszeit ⁶⁾	1.050 ms						
Schnittstellensignale							
Clock +, Clock -, Data +, Data - 7)	SSI max. Taktfrequenz 1 MHz						
	bzw. min. LOW-Pegel (Clock +): 500 ns						
Γ x D +, T x D –, R x D +, R x D –	RS422						
SET (elektronische Justage)	H-aktiv (L \triangleq 0 - 4,7 V; H \triangleq 10 - U _s V)						

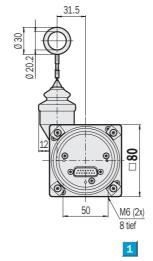
 $^{^{}m 1)}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.

- $^{\rm 3)}\,$ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- ⁴ Nach DIN EN 60068-2-27
- ⁵⁾ Nach DIN EN 60068-2-6
- ⁶⁾ Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.
- 7) Für höhere Taktfrequenzen Synchron SSI wählen.


Bestell-Information								
BTF08; U _s 10 32 V; Gerätestecker M23, 12-polig								
25 Bit SSI, Gray-Code, Set = 1.000	25 Bit SSI, Gray-Code, Set = 1.000							
Тур	Bestell-Nr.	Beschreibung						
BTF08-A1AM0240	1 034 299	SSI, Messlänge 2 m						
BTF08-A1AM0340	1 034 892	SSI, Messlänge 3 m						

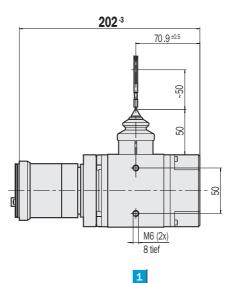
²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

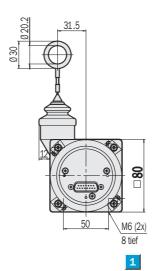



Absolut-Seilzugencoder

- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

Maßbild Seilzugencoder BTF08 Profibus, CANopen, DeviceNet, Messlänge 2 m





1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild Seilzugencoder BTF08 Profibus, CANopen, DeviceNet, Messlänge 3 m

Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

Siehe Kapitel Zubehör

Encoder-Zubehör

Profibus-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 140/141

CANopen-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 142/143

DeviceNet-Anschlussadapter mit PIN- und Aderbelegung DeviceNet siehe Seite 144/146

Technische Daten	BTF08	PB	СО	DN	PB	со	DN	
		2m	2m	2m	3 m	3 m	3 m	
Trommelgehäuse	Aluminium eloxiert							
Federgehäuse	Zink-Druckguss							
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 1,35 mm							
Messlänge	max. 2 m							
	max. 3 m							1
Masse	ca. 1,9 kg							-
	ca. 2,1 kg							
Messschritt (Empfehlung)	0,025 mm 1							
Linearität	typ. 0,05 %							
Wiederholbarkeit	± 1 Messschritt							
Verstellgeschwindigkeit	4 m/sec.							
Positionsbildungszeit	0,25 ms							
Federrückzugskraft (typ.)								
Anfang/Ende 1)	6 N / 14 N							
Arbeitstemperaturbereich	– 20 + 70 °C							
Lagerungstemperaturbereich	– 40 + 100 °C							
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen							
EMV 3)								
Widerstandsfähigkeit								
gegenüber Schocks ⁴⁾	100/6 g/ms							
gegenüber Vibration 5)	20/10 2.000 g/Hz							
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)							
	IP 67 (Encoder)							
Betriebsspannungsbereich (U _s)	10 32 V							
Leistungsaufnahme max.	2,0 W							
Initialisierungszeit ⁶⁾	1.250 ms							
Bus-Interface								_
Elektronische Justage (Number SE								
Busabschluss 7)	über DIP-Schalter							
Elektrischer Anschluss	Anschlussadapter							
Elektrische Schnittstelle 8)	RS485							
Elektrische Schnittstelle ⁹⁾	ISO-DIS 11898							
Protokoll	Profil für Encoder (07hex) – Class 2							
	Communication Profile DS 301 V4.0			1			<u> </u>	
	Device Profile DSP 406 V2.0							1
	DeviceNet Specification, Release 2.0							
Adresseinstellung (Knoten-Nr.)	0 127 (DIP-Schalter oder Protokoll)							1
Adresseinstellung (Note ID)	0 63 (DIP-Schalter oder Protokoll)							
Datenübertragungsrate (Baudrate)								
(DIP-Schalter oder Protokoll)	(10, 20, 50, 125, 250, 500) kB, 1 MB							1
(DIP-Schalter oder Protokoll)	(125, 250, 500) kB							L
Status-Information	Betrieb (LED grün), Busaktivität (LED rot)							
	2-farbige LED für CAN Controller Status							1
	Netzwerk-Status-LED (NS), 2-farbig				1			4

Bei anderen Temperaturen kann es zu Abweichungen kommen.

¹⁾ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen.

1 Bei kundenseitiger Konfiguration des Encoders auf 8.000 Schritte x 16 Umdrehungen über den Bus-Master. (Eintrag ab Werk in GSD- bzw. EDS-Datei: 8.192 Schritte x 8.192 Umdr.)

Bestell-Information		
BTF08; U _s 10 32 V; Feldbusse		
Тур	Bestell-Nr.	Beschreibung
BTF08-P1HM0241	1 034 305	Profibus, Messlänge 2 m
BTF08-D1HM0241	1 034 311	DeviceNet, Messlänge 2 m
BTF08-C1HM0241	1 034 317	CANopen, Messlänge 2 m
BTF08-P1HM0341	1 034 893	Profibus, Messlänge 3 m
BTF08-D1HM0341	1 034 894	DeviceNet, Messlänge 3 m
BTF08-C1HM0341	1 034 895	CANopen, Messlänge 3 m

Achtung: Anschlussadapter separat bestellen (siehe Seiten 140 bis 146)

²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

 $^{^{3)}}$ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3

⁴ Nach DIN EN 60068-2-27

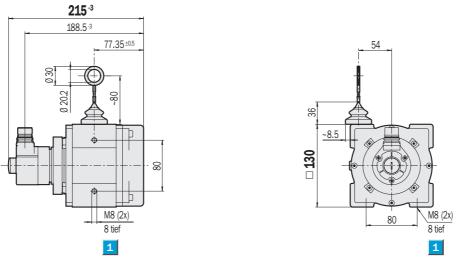
⁵⁾ Nach DIN EN 60068-2-6

⁶⁾ Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.

 $^{^{7)}}$ Zuschalten nur bei Endgerät

⁸⁾ Nach EN 50 170-2 (DIN 19245 Teil 1-3) galvanisch getrennt durch Optokoppler

 $^{^{9)}\}left(\text{CAN High Speed}\right)$ und CAN-Spezifikation 2.0 B, galvanisch getrennt


¹⁰⁾ Automatische Erkennung

Maßbild Seilzugencoder BTF13 SSI , Messlänge 5 m

Absolut-Seilzugencoder

- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

284⁻³ 257.5-3 123.85 8 M8 (2x) 8 tief 1

Maßbild Seilzugencoder BTF13 SSI, Messlänge 10 m

130 M8 (2x) 8 tief 1

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

 ϵ

Ansicht Gerätestecker M23 am Encoder

Siehe Kapitel Zubehör Encoder-Zubehör

PIN- und A	derbelegung		
PIN	Signal	Farbe der Adern	Erklärung
		(Leitungsabgang))
1	GND	blau	Masseanschluss
2	Data +	weiß	Schnittstellensignale
3	Clock +	gelb	Schnittstellensignale
4	R x D +	grau	RS422-Programmierleitung
5	R x D –	grün	RS422-Programmierleitung
6	T x D +	rosa	RS422-Programmierleitung
7	T x D -	schwarz	RS422-Programmierleitung
8	U _s	rot	Betriebsspannung
9	SET	orange	elektronische Justage
10	Data –	braun	Schnittstellensignale
11	Clock -	lila	Schnittstellensignale
12	N. C.	orange/schwarz	Not connected
	Schirm		Gehäusepotential

Achtung! PINs, die mit N. C. bezeichnet sind, dürfen nicht belegt werden.

Technische Daten	BTF13	SSI	SSI 10 m				
	L	_5m_	10 m				
Trommelgehäuse	Aluminium eloxiert			i	 		 _
Federgehäuse	Kunststoff				 		_
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 1,35 mm			1			
Messlänge	max. 5 m		1		 		 _
	max. 10 m				 		
Masse	ca. 3,3 kg		1		 		
	ca. 4,0 kg				 		
Codeart	25 Bit/Gray				 		
Codeverlauf	ansteigend in Messrichtung				 		 _
Messschritt	0,05 mm				 		
Linearität	typ. 0,05 %				 		
Wiederholbarkeit	± 1 Messschritt				 		
Verstellgeschwindigkeit	4 m/sec.				 		
Positionsbildungszeit	0,15 ms				 		 _
Federrückzugskraft (typ.)					 		
Anfang/Ende 1)	15 N/20 N		1		 	_	 _
Anfang/Ende 1)	10 N/20 N			1	 		
Arbeitstemperaturbereich	− 20 + 70 °C				 		 _
Lagerungstemperaturbereich	− 40 + 100 °C				 		 _
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen						
EMV 3)							
Widerstandsfähigkeit					 		
gegenüber Schocks 4)	100/6 g/ms				 		
gegenüber Vibration ⁵⁾	20/10 2.000 g/Hz				 		
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)				 		
	IP 67 (Encoder)				 		
Betriebsspannungsbereich (U _s)	10 32 V				 		
Leistungsaufnahme max.	0,8 W				 		
nitialisierungszeit ⁶⁾	1.050 ms				 		_
Schnittstellensignale					 		 _
Clock +, Clock -, Data +, Data - 7)	SSI max. Taktfrequenz 1 MHz				 		
·	bzw. min. LOW-Pegel (Clock +): 500 ns			1	 		
Гх D +, Тх D –, R х D +, R х D –	RS422			1	 		
SET (elektronische Justage)	H-aktiv (L \triangleq 0 - 4,7 V; H \triangleq 10 - U _s V)			1	 		
, , , , , , , , , , , , , , , , , , , ,	,, .,		_		 		

 $^{^{1\!\!/}}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.

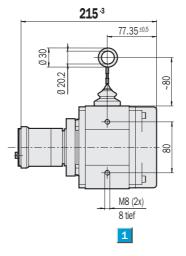
- ⁴ Nach DIN EN 60068-2-27
- 5) Nach DIN EN 60068-2-6

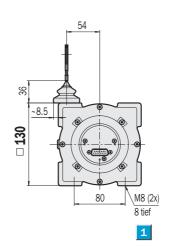
Bestell-Information		
BTF13; U _s 10 32 V; Geräte	estecker M23, 12-polig	
25 Bit SSI; Gray-Code, Set =	1.000	
Тур	Bestell-Nr.	Beschreibung
BTF13-A1AM0520	1 034 300	SSI, Messlänge 5 m
BTF13-A1AM1020	1 034 301	SSI. Messlänge 10 m

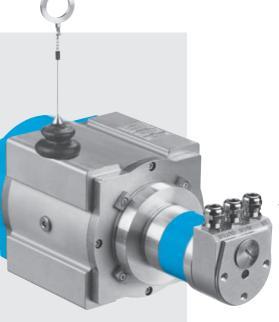
²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

³⁾ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3

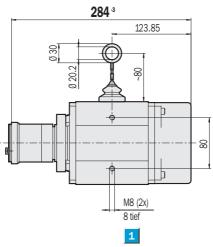
⁶⁾ Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.

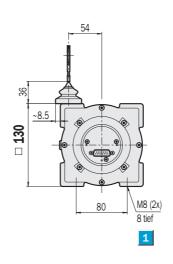

 $^{^{7)}\,}$ Für höhere Taktfrequenzen Synchron SSI wählen.




Absolut-Seilzugencoder

- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl


Maßbild Seilzugencoder BTF13 Profibus, CANopen, DeviceNet, Messlänge 5 m



Maßbild Seilzugencoder BTF13 Profibus, CANopen, DeviceNet, Messlänge 10 m

 ϵ

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

Siehe Kapitel Zubehör

Encoder-Zubehör

Profibus-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 140/141

CANopen-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 142/143

DeviceNet-Anschlussadapter mit PIN- und Aderbelegung DeviceNet siehe Seite 144/146

Technische Daten	BTF13	PB	CO	DN	PB	СО	DN		
		5m	5m	5m	10 m	10 m	10 m		
Trommole's häus s	Alumainium eleviert								
rommelgehäuse	Aluminium eloxiert							 	
edergehäuse	Kunststoff							 	
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 1,35 mm							 	
Messlänge	max. 5 m							 	
Masse	max. 10 m								
Masse	ca. 3,4 kg								
Maccanhritt /Emnéahl	ca. 4,1 kg							 	
Messschritt (Empfehlung) .inearität	0,05 mm 1								
inearität Viederholbarkeit	typ. 0,05 % + 1 Messschritt								
	± 1 Messschritt							 	
/erstellgeschwindigkeit	4 m/sec.							 	
Positionsbildungszeit	0,25 ms								
Federrückzugskraft (typ.)	15 N/20 N				1				
Anfang/Ende 1)	15 N/20 N								
Anfang/Ende 1) Arbeitstemperaturbereich	10 N/20 N - 20 + 70 °C								
· · · · · · · · · · · · · · · · · · ·	- 20 + 70 °C - 40 + 100 °C								
agerungstemperaturbereich								 	
ebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen							 	
Viderstandsfähigkeit	100/6 g/mc								
gegenüber Schocks 4)	100/6 g/ms							 	
gegenüber Vibration 5)	20/10 2.000 g/Hz								
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)							 	
Ratricheenannungeherstel. (11.)	IP 67 (Encoder)								
Betriebsspannungsbereich (U _s)	10 32 V								
eistungsaufnahme max.	2,0 W								
nitialisierungszeit ⁶⁾	1.250 ms							 	
Bus-Interface) über PDESETTeeter a das Barrio III								
Elektronische Justage (Number SET)								 	
Busabschluss 7)	über DIP-Schalter							 	
Elektrischer Anschluss	Anschlussadapter								
Elektrische Schnittstelle 8)	RS485							 	
Elektrische Schnittstelle 9)	Profil für Encoder (07hm) – Class 2								
Protokoll	Profil für Encoder (07hex) – Class 2								
	Communication Profile DS 301 V4.0								
	Device Profile DSP 406 V2.0 DeviceNet Specification, Release 2.0				i				
Adraccainctallung (Vactor No)	DeviceNet Specification, Release 2.0								
Adresseinstellung (Knoten-Nr.)	0 127 (DIP-Schalter oder Protokoll)								
Adresseinstellung (Note ID) Datenübertragungsrate (Raudrate) 10	0 63 (DIP-Schalter oder Protokoll)								
Datenübertragungsrate (Baudrate) DIP Schalter oder Protokoll)								 	
DIP-Schalter oder Protokoll)	(10, 20, 50, 125, 250, 500) kB, 1 MB							 	
DIP-Schalter oder Protokoll)	(125, 250, 500) kB				1				
Status-Information	Betrieb (LED grün), Busaktivität (LED rot)					1			
rutus iiiviiiiduvii	2-farbige LED für CAN Controller Status								

Bei anderen Temperaturen kann es zu Abweichungen kommen.

1) Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen.

Bei kundenseitiger Konfiguration des Encoders auf 6.680 Schritte x 32 Umdrehungen über den Bus-Master. (Eintrag ab Werk in GSD- bzw. EDS-Datei: 8.192 Schritte x 8.192 Umdr.)

Bestell-Information		
BTF13; U _s 10 32 V; Feldbusse		
Тур	Bestell-Nr.	Beschreibung
BTF13-P1HM0525	1 034 306	Profibus, Messlänge 5 m
BTF13-D1HM0525	1 034 312	DeviceNet, Messlänge 5 m
BTF13-C1HM0525	1 034 318	CANopen, Messlänge 5 m
BTF13-P1HM1025	1 034 307	Profibus, Messlänge 10 m
BTF13-D1HM1025	1 034 313	DeviceNet, Messlänge 10 m
BTF13-C1HM1025	1 034 319	CANopen, Messlänge 10 m

Achtung: Anschlussadapter separat bestellen (siehe Seiten 140 bis 146)

²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

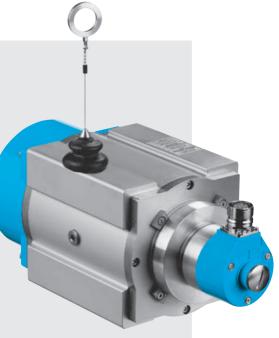
³⁾ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3

⁴ Nach DIN EN 60068-2-27

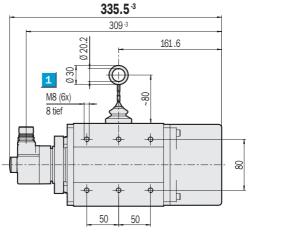
⁵⁾ Nach DIN EN 60068-2-6

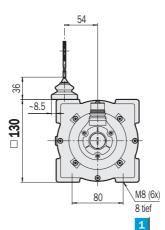
 $^{^{\}rm 6)}$ lst die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.

⁷⁾ Zuschalten nur bei Endgerät

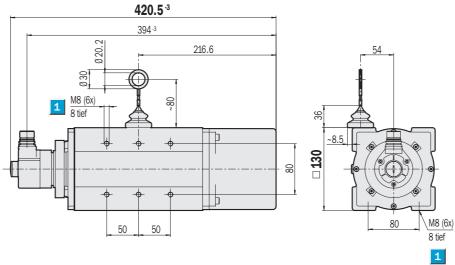

⁸⁾ Nach EN 50 170-2 (DIN 19245 Teil 1-3) galvanisch getrennt durch Optokoppler

^{9) (}CAN High Speed) und CAN-Spezifikation 2.0 B, galvanisch getrennt


¹⁰⁾ Automatische Erkennung



- Wegmessung mittelsSeilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl



Maßbild Seilzugencoder BTF13 SSI, Messlänge 20 m

Maßbild Seilzugencoder BTF13 SSI, Messlänge 30 m

Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

((

Ansicht Gerätestecker M23 am Encoder

Siehe Kapitel Zubehör
Encoder-Zubehör

PIN- und Ad	lerbelegung		
PIN	Signal	Farbe der Adern	Erklärung
		(Leitungsabgang))
1	GND	blau	Masseanschluss
2	Data +	weiß	Schnittstellensignale
3	Clock +	gelb	Schnittstellensignale
4	$R \times D +$	grau	RS422-Programmierleitung
5	R x D -	grün	RS422-Programmierleitung
6	T x D +	rosa	RS422-Programmierleitung
7	T x D -	schwarz	RS422-Programmierleitung
8	U _s	rot	Betriebsspannung
9	SET	orange	elektronische Justage
10	Data –	braun	Schnittstellensignale
11	Clock -	lila	Schnittstellensignale
12	N. C.	orange/schwarz	Not connected
	Schirm		Gehäusepotential

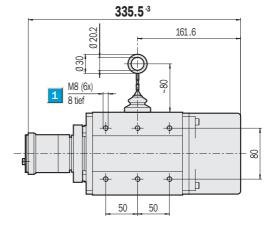
Achtung! PINs, die mit N. C. bezeichnet sind, dürfen nicht belegt werden.

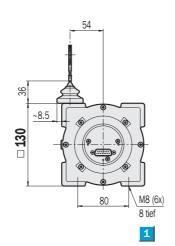
Technische Daten	BTF13	SSI	SSI			
I COMMISCINE DATEM	DILTO	20 m	30 m			
Trommelgehäuse	Aluminium eloxiert					
Federgehäuse	Kunststoff					
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 0,81 mm					
Messlänge	max. 20 m					
	max. 30 m					
Masse	ca. 5,3 kg					
	ca. 6,5 kg					
Codeart parametrierbar	25 Bit/Gray					
Codeverlauf parametrierbar	ansteigend in Messrichtung					
Messschritt	0,05 mm					
Linearität	typ. 0,05 %					
Wiederholbarkeit	± 1 Messschritt					
Verstellgeschwindigkeit	4 m/sec.					
Positionsbildungszeit	0,15 ms					
Federrückzugskraft (typ.)						
Anfang/Ende 1)	10 N / 20 N					
Arbeitstemperaturbereich	− 20 + 70 °C					
Lagerungstemperaturbereich	– 40 + 100 °C					
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen					
EMV 3)						
Widerstandsfähigkeit						
gegenüber Schocks ⁴⁾	100/6 g/ms					
gegenüber Vibration 5)	20/10 2.000 g/Hz					
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)					
	IP 67 (Encoder)					
Betriebsspannungsbereich (U _s)	10 32 V					
Leistungsaufnahme max.	0,8 W					
Initialisierungszeit ⁶⁾	1.050 ms					
Schnittstellensignale						
Clock +, Clock -, Data +, Data - 7)	SSI max. Taktfrequenz 1 MHz					
	bzw. min. LOW-Pegel (Clock +): 500 ns					
T x D +, T x D -, R x D +, R x D -	RS422					
SET (elektronische Justage)	H-aktiv (L ≜ 0 - 4,7 V; H ≜ 10 - U _s V)					
	, , , -3 /					

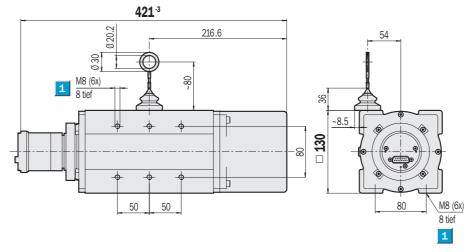
 $^{^{(1)}}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.

- ⁴ Nach DIN EN 60068-2-27
- 5) Nach DIN EN 60068-2-6
- 6) Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.
- 7) Für höhere Taktfrequenzen Synchron SSI wählen.

Bestell-Information					
BTF13; U _s 10 32 V; Gerätestecker M23, 12-polig					
25 Bit SSI; Gray-Code, Set = 1.000					
Тур	Bestell-Nr.	Beschreibung			
BTF13-A1AM2020	1 034 302	SSI, Messlänge 20 m			
BTF13-A1AM3020	1 034 303	SSI, Messlänge 30 m			


²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.


 $^{^{\}rm 3)}\,$ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3


- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

Maßbild Seilzugencoder BTF13 Profibus, CANopen, DeviceNet, Messlänge 20 m

Maßbild Seilzugencoder BTF13 Profibus, CANopen, DeviceNet, Messlänge 30 m

Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

Siehe Kapitel Zubehör

Encoder-Zubehör

((

Profibus-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 140/141

CANopen-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 142/143

DeviceNet-Anschlussadapter mit PIN- und Aderbelegung DeviceNet siehe Seite 144/146

Technische Daten	BTF13	PB	СО	DN	PB	co	DN		
		20 m	20 m	20 m	30 m	30m	30 m		
Trommelgehäuse	Aluminium eloxiert								
Federgehäuse	Kunststoff							 	
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 0,81 mm							 	
Messlänge	max. 20 m							 	
	max. 30 m							 	
Masse	ca. 5,4 kg							 	
	ca. 6,6 kg							 	
Messschritt (Empfehlung)	0,05 mm 1							 	 _
Linearität	typ. 0,05 %							 	
Wiederholbarkeit	± 1 Messschritt							 	
Verstellgeschwindigkeit	4 m/sec.							 	 _
Positionsbildungszeit	0,25 ms							 	 _
Federrückzugskraft (typ.)								 	
Anfang/Ende 1)	10 N/20 N							 	
Arbeitstemperaturbereich	– 20 + 70 °C							 	
Lagerungstemperaturbereich	− 40 + 100 °C							 	
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen							 	
EMV 3)								 	
Widerstandsfähigkeit								 	
gegenüber Schocks 4)	100/6 g/ms							 	
gegenüber Vibration 5)	20/10 2.000 g/Hz							 	
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)							 	
	IP 67 (Encoder)								
Betriebsspannungsbereich (U _s)	10 32 V							 	
Leistungsaufnahme max.	2,0 W								
Initialisierungszeit ⁶⁾	1.250 ms							 	
Bus-Interface								 	
Elektronische Justage (Number SET)								 	
Busabschluss 7)	über DIP-Schalter							 	
Elektrischer Anschluss	Anschlussadapter							 	
Elektrische Schnittstelle 8)	RS485							 	
Elektrische Schnittstelle 9)	ISO-DIS 11898							 	
Protokoli	Profil für Encoder (07hex) – Class 2							 	
	Communication Profile DS 301 V4.0							 	
	Device Profile DSP 406 V2.0							 	
	DeviceNet Specification, Release 2.0								
Adresseinstellung (Knoten-Nr.)	0 127 (DIP-Schalter oder Protokoll)							 	
Adresseinstellung (Note ID)	0 63 (DIP-Schalter oder Protokoll)								
Datenübertragungsrate (Baudrate) 10	<u> </u>							 	
(DIP-Schalter oder Protokoll)	(10, 20, 50, 125, 250, 500) kB, 1 MB								
(DIP-Schalter oder Protokoll)	(125, 250, 500) kB							 	
Status-Information	Betrieb (LED grün), Busaktivität (LED rot)							 	
	2-farbige LED für CAN Controller Status							 	
	Netzwerk-Status-LED (NS), 2-farbig				1			 	

Bei anderen Temperaturen kann es zu Abweichungen kommen.

¹⁾ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. 1 Bei kundenseitiger Konfiguration des Encoders auf 6.646 Schritte x 128 Umdrehungen über den Bus-Master. (Eintrag ab Werk in GSD- bzw. EDS-Datei: 8.192 Schritte x 8.192 Umdr.)

Bestell-Information							
BTF13; U _s 10 32 V; Feldbusse							
Тур	Bestell-Nr.	Beschreibung					
BTF13-P1HM2025	1 034 308	Profibus, Messlänge 20 m					
BTF13-D1HM2025	1 034 314	DeviceNet, Messlänge 20 m					
BTF13-C1HM2025	1 034 320	CANopen, Messlänge 20 m					
BTF13-P1HM3025	1 034 309	Profibus, Messlänge 30 m					
BTF13-D1HM3025	1 034 315	DeviceNet, Messlänge 30 m					
BTF13-C1HM3025	1 034 321	CANopen, Messlänge 30 m					

Achtung: Anschlussadapter separat bestellen (siehe Seiten 140 bis 146)

²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

 $^{^{3)}\,\}mathrm{Nach}$ DIN EN 61000-6-2 und DIN EN 61000-6-3

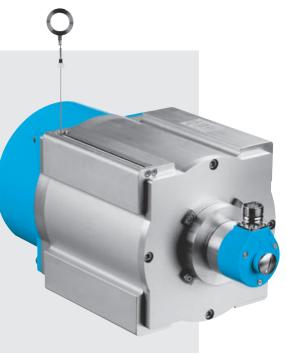
⁴ Nach DIN EN 60068-2-27

⁵⁾ Nach DIN EN 60068-2-6

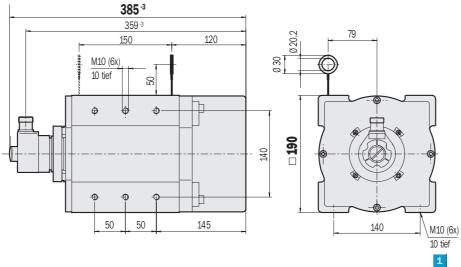
⁶⁾ Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.

⁷⁾ Zuschalten nur bei Endgerät

⁸⁾ Nach EN 50 170-2 (DIN 19245 Teil 1-3) galvanisch getrennt durch Optokoppler


^{9) (}CAN High Speed) und CAN-Spezifikation 2.0 B, galvanisch getrennt

 $^{^{10)}\,\}mathrm{Automatische}$ Erkennung



Absolut-Seilzugencoder

- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil

Maßbild Seilzugencoder BTF19 SSI, Messlänge 50 m

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

((

Ansicht Gerätestecker M23 am Encoder

Siehe Kapitel Zubehör	
Encoder-Zubehör	

PIN- und A	derbelegung		
PIN	Signal	Farbe der Adern	Erklärung
		(Leitungsabgang))
1	GND	blau	Masseanschluss
2	Data +	weiß	Schnittstellensignale
3	Clock +	gelb	Schnittstellensignale
4	R x D +	grau	RS422-Programmierleitung
5	R x D -	grün	RS422-Programmierleitung
6	T x D +	rosa	RS422-Programmierleitung
7	T x D -	schwarz	RS422-Programmierleitung
8	U _s	rot	Betriebsspannung
9	SET	orange	elektronische Justage
10	Data –	braun	Schnittstellensignale
11	Clock -	lila	Schnittstellensignale
12	N. C.	orange/schwarz	Not connected
	Schirm		Gehäusepotential

Achtung! PINs, die mit N. C. bezeichnet sind, dürfen nicht belegt werden.

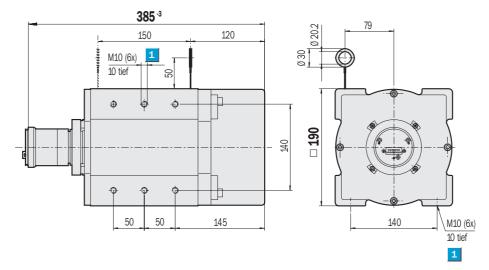
Technische Daten	BTF19	SSI				
		50 m				
Trommelgehäuse	Aluminium eloxiert					
Federgehäuse	Zink-Druckguss					
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 1,35 mm					
Messlänge	max. 50 m					
Masse	ca. 16,8 kg					
Codeart	25 Bit/Gray					
Codeverlauf	ansteigend in Messrichtung					
Messschritt	0,1 mm					
Linearität	typ. 0,05 %					
Wiederholbarkeit	± 1 Messschritt					
Verstellgeschwindigkeit	4 m/sec.					
Positionsbildungszeit	0,15 ms					
Federrückzugskraft (typ.)						
Anfang/Ende 1)	18 N/37 N					
Arbeitstemperaturbereich	−20 + 70 °C					
Lagerungstemperaturbereich	− 40 + 100 °C					
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen					
EMV 3)						
Widerstandsfähigkeit			 			
gegenüber Schocks 4)	100/6 g/ms					
gegenüber Vibration 5)	20/10 2.000 g/Hz					
Schutzart nach IEC 60529	IP 31 (Seilzugmechanik)					
	IP 67 (Encoder)					
Betriebsspannungsbereich (U _s)	10 32 V					
Leistungsaufnahme max.	0,8 W					
Initialisierungszeit ⁶⁾	1.050 ms					
Schnittstellensignale						
Clock +, Clock -, Data +, Data - 7)	SSI max. Taktfrequenz 1 MHz					
	bzw. min. LOW-Pegel (Clock +): 500 ns					
T x D +, T x D -, R x D +, R x D -	RS422					
SET (elektronische Justage)	H-aktiv (L \triangleq 0 - 4,7 V; H \triangleq 10 - U _s V)					


 $^{^{1\!\!/}}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.

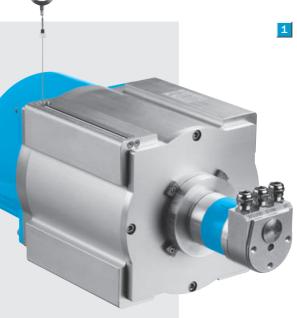
- 3) Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- ⁴ Nach DIN EN 60068-2-27
- 5) Nach DIN EN 60068-2-6
- 6) Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.
- $^{7)}\,$ Für höhere Taktfrequenzen Synchron SSI wählen.

Bestell-Information						
BTF19; U _s 10 32 V; Gerätestecker M23, 12-polig						
25 Bit SSI, Gray-Code, Set = 1.000						
Typ Beschreibung						
BTF19-A1AM5010	1 034 304	SSI, Messlänge 50 m				

²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.


Absoluter Seilzugencoder BTF19 Feldbusse, Messlängen von > 30 m bis 50 m

Absolut-Seilzugencoder


- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil

Maßbild Seilzugencoder BTF19 Profibus, CANopen, DeviceNet Messlänge 50 m

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

((

Siehe Kapitel Zubehör

Encoder-Zubehör

Profibus-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 140/141

CANopen-Anschlussadapter mit PIN- und Aderbelegung siehe Seite 142/143

DeviceNet-Anschlussadapter mit PIN- und Aderbelegung DeviceNet siehe Seite 144/146

Technische Daten	BTF19	PB	CO	DN			
		50 m	50 m	50 m			
Frommelgehäuse	Aluminium eloxiert						
Federgehäuse	Zink-Druckguss				 	 	
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 1,35 mm				 	 	
Wesslänge	max. 50 m				 	 	
Vlasse	ca. 16,9 kg				 	 	
Wessschritt (Empfehlung)	0,1 mm 1						
Linearität	typ. 0,05 %					 	
Wiederholbarkeit	± 1 Messschritt				 	 	
Verstellgeschwindigkeit	4 m/sec.				 	 	
Positionsbildungszeit	0,25 ms				 	 	
Federrückzugskraft (typ.)					 	 	 _
Anfang/Ende 1)	18 N/37 N				 	 	 _
Arbeitstemperaturbereich	− 20 + 70 °C				 	 	 _
Lagerungstemperaturbereich	− 40 + 100 °C				 	 	 _
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen				 	 	 _
EMV 3)					 	 	 _
Widerstandsfähigkeit					 	 	 _
gegenüber Schocks ⁴⁾	100/6 g/ms				 	 	 _
gegenüber Vibration ⁵⁾	20/10 2.000 g/Hz				 	 	
Schutzart nach IEC 60529	IP 31 (Seilzugmechanik)				 	 	 _
	IP 67 (Encoder)				 	 	 _
Betriebsspannungsbereich (U _s)	10 32 V				 	 	
Leistungsaufnahme max.	2,0 W				 	 	
nitialisierungszeit ⁶⁾	1.250 ms				 	 	
Bus-Interface					 	 	
Elektronische Justage (Number SET)	über PRESET-Taster oder Protokoll					 	
Busabschluss 7)	über DIP-Schalter						
Elektrischer Anschluss	Anschlussadapter						
Elektrische Schnittstelle ⁸⁾	RS485						
Elektrische Schnittstelle ⁹⁾	ISO-DIS 11898						
Protokoll	Profil für Encoder (07hex) – Class 2						
	Communication Profile DS 301 V4.0						
	Device Profile DSP 406 V2.0				 	 	
	DeviceNet Specification, Release 2.0				 	 	 _
Adresseinstellung (Knoten-Nr.)	0 127 (DIP-Schalter oder Protokoll)				 	 	
Adresseinstellung (Note ID)	0 63 (DIP-Schalter oder Protokoll)				 	 	 _
Datenübertragungsrate (Baudrate) ¹⁰	9,6 kBaud 12 MBaud				 	 	
(DIP-Schalter oder Protokoll)	(10, 20, 50, 125, 250, 500) kB, 1 MB				 	 	
DIP-Schalter oder Protokoll)	(125, 250, 500) kB				 	 	
Status-Information	Betrieb (LED grün), Busaktivität (LED rot)				 	 	
	2-farbige LED für CAN Controller Status				 	 	
	Netzwerk-Status-LED (NS), 2-farbig				 	 	

Bei anderen Temperaturen kann es zu Abweichungen kommen.

¹⁾ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen.

Bei kundenseitiger Konfiguration des Encoders auf 4.900 Schritte x 128 Umdrehungen über den Bus-Master. (Eintrag ab Werk in GSD- bzw. EDS-Datei: 8.192 Schritte x 8.192 Umdr.)

Bestell-Information							
BTF19; U _s 10 32 V; Feldbusse							
Тур	Bestell-Nr.	Beschreibung					
BTF19-P1HM5017	1 034 310	Profibus, Messlänge 50 m					
BTF19-D1HM5017	1 034 316	DeviceNet, Messlänge 50 m					
BTF19-C1HM5017	1 034 322	CANopen, Messlänge 50 m					

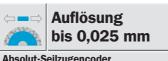
Achtung: Anschlussadapter separat bestellen (siehe Seiten 140 bis 146)

²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

 $^{^{3)}\}mbox{Nach DIN EN 61000-6-2}$ und DIN EN 61000-6-3

⁴ Nach DIN EN 60068-2-27

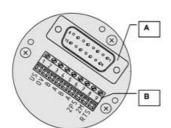
⁵⁾ Nach DIN EN 60068-2-6


⁶⁾ Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.

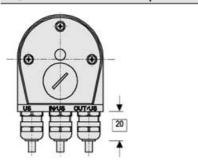
⁷⁾ Zuschalten nur bei Endgerät

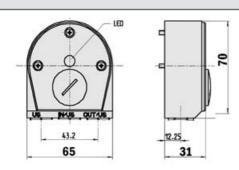

⁸⁾ Nach EN 50 170-2 (DIN 19245 Teil 1-3) galvanisch getrennt durch Optokoppler

 $^{^{9)}\}left(\text{CAN High Speed}\right)$ und CAN-Spezifikation 2.0 B, galvanisch getrennt

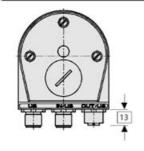

 $^{^{10)}\,\}mathrm{Automatische}$ Erkennung

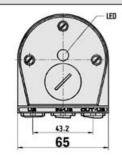
- Absolut-Seilzugencoder
- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

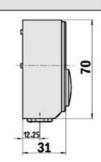



ϵ

- A Interne Steckverbindung zum Encoder **B** Externe Verbindung zum Bus
- Encoder mit einem Profibus-Anschlussadapter besitzen Verschraubungen (metrisch/PG) zum Anschließen der Bus- und Versorgungsleitungen. Zum Anschluss der Leitungen wird der Anschlussadapter vom Komplettgerät abgeschraubt. Die obenstehende Abbildung zeigt die Anschlussbelegung innerhalb des Anschlussadapters.


Maßbild Profibus-Anschlussadapter KA3

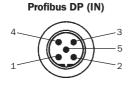


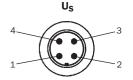


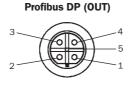
Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild Profibus-Anschlussadapter SR3

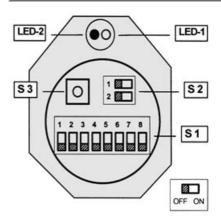
Allgemeintoleranzen nach DIN ISO 2768-mk


Bestell-Information							
BTF Profibus-Anschlussadapter							
Тур	Bestell-Nr.	Beschreibung					
AD-ATM60-KA3PR	2 029 225	Anschlussadapter KA3, 3 x PG					
AD-ATM60-SR3PR	2 031 985	Anschlussadapter SR3, 1 x M12, 4-pol. 2 x M12, 5-pol.					


PIN- und Aderbelegung für Anschlussadapter


Klemmleiste	Stecker 4-pol.	Stecker 5-pol.	Buchse 5-pol.	Signal	Erklärung
1	1	_	_	U _s (24 V)	Betriebsspannung 10 32 V
2	3	_	_	0 V (GND)	Masse (0 V)
3	_	_	4	В	B-Leitung Profibus DP (out)
4	_	_	2	А	A-Leitung Profibus DP (out)
5	_	4	_	В	B-Leitung Profibus DP (in)
6	_	2	_	А	A-Leitung Profibus DP (in)
7	_	_	1	2P5 ¹⁾	+ 5 V (potential getrennt)
8	_	_	3	2M ¹⁾	0 V (potential getrennt)
9	_	_	_	RTS ²⁾	Request To Send
_	2	1	_	N. C.	_
_	4	3	_	N. C.	_
_	_	5	5	Schirm	Gehäusepotential

- 1) Verwendung für externen Busabschluss oder zur Versorgung der Sender/Empfänger einer LWL-Übertragung.
- 2) Signal ist optional, dient der Richtungserkennung eines LWL-Anschlusses.


Gerätestecker M12 (am Anschlussadapter)

Schaltereinstellungen

Schaltereinstellungen

Der Zugang für die Bedienung der DIP-Schalter erfolgt über eine Verschraubung (metrisch/PG) auf der Rückseite des Anschlussadapters.

S 1 (1-7) Adresseinstellung (0 ... 127) S 1 (8-8) Zählrichtung (CW / CCW)

S 2 Busabschluss

S 3 PRESET-Taster (Number SET)

Statusinformation über LEDs

LED-1 Betriebsspannung (grün)

LED-2 Busaktivität (rot)

Implementierung

DP Funktionalitäten

gemäss den Profibus-DP-Grundfunktionen

DP-Dienste

- · Datenaustausch (Write Read Data)
- Adressvergabe (Set Slave Address)
- Steuerkommandos (Global_Control)
- Lesen der Eingänge (Read_Inputs)
- Lesen der Ausgänge (Read_Outputs)
- Diagnosedaten lesen (Slave_Diagnosis)
- Parametrierdaten senden (Set Param)

Kommunikation

· Zyklischer Master-Slave-Datenverkehr

Schutzmechanismen

- Übertragung der Daten mit HD = 4
- Zeitüberwachung des Datenverkehrs

Parametrierung

Einstellungen nach Encoder-Profil

- Zählrichtung (CW, CCW)
- Class-2-Funktionalität (ON, OFF)
- Skalierungsfunktion (ON, OFF)
- Schritte pro Umdrehung (1...8.192)
- Gesamtauflösung (GA) -- 1...67.108.864
 Schritte, mit GA = 2ⁿ x SpU -- (n=0...13)
- "Aktivierung SSA-Dienst" 2)
- Selektion der Stationsadresse ²⁾

Konfiguration

Einstellung der Formate (IN/OUT) für den zyklischen Datenaustausch über ein Konfigurations-Byte (K-1).

2 Worte IN/OUT Data (I-1/0-1) 1)

4 Worte IN/OUT Data (I-1, I-2, I-3/0-1) 2)

Datenaustausch: - Input Data (IN)

I-1 Positionswert 1) 4 Byte
I-2 Geschwindigkeit (U/min) 2) 2 Byte
I-3 Zeitstempel 2) 2 Byte

Datenaustausch: - Output Data (OUT)

O-1 PRESET-Wert 1) 4 Byte

Diagnoseinformationen

 Stationsbezogene Diagnose (63 Byte nach Encoder-Profil Class-2)

Einstellung: - PRESET-Wert

Die PRESET-Funktion dient zur Inbetriebnahme und der Zuordnung eines bestimmten Positionswertes zur aktuellen physikalischen Winkelstellung.

Folgende Einstellungen sind möglich:

- per Hardware (PRESET-Taster: S3)
- per Software: -- (siehe Output Data)

Einstellung: - Zählrichtung

- per Hardware über DIP-Schalter S1-(8)
- per Software über Telegramm

Zählrichtung steigend: Drehen der Welle im Uhrzeigersinn

(CW) mit Blick auf die Welle

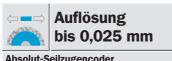
Einstellung: - Stationsadresse

- per Hardware über DIP-Schalter S1
- per Software über Telegramm

Die Einstellung per Software erfolgt nur bei vorheriger Aktivierung des "SSA-Dienst"

Einstellung: - Busabschluss

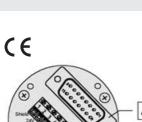
Der 2-pol. DIP-Schalter (S2) ermöglicht das Zu- und Abschalten eines internen Busabschlusses (ON/OFF).


Wird der Bus extern terminiert, muss Schalter S2 in Stellung OFF sein.

Gerätespezifische Datei (GS.)

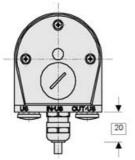
Zur automatischen Inbetriebnahme des Encoders dient die sog. GSD-Datei. In ihr sind alle charakteristischen Merkmale des Gerätes definiert.

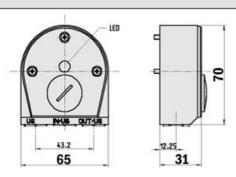
STEG 5952.GSD Deutsch STEG 5952.GSE Englisch


- 1) Nach Encoder-Profil
- 2) Herstellerspezifische Funktion

Absolut-Seilzugencoder

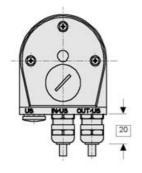
- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

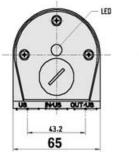

A Interne Steckverbindung zum Encoder **B** Externe Verbindung zum Bus

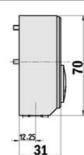


В

 OUT/U_s (Buchse) IN/U_s (Stift) Gerätestecker M12 (Anschlussadapter)

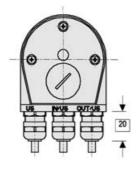

Maßbild CANopen-Anschlussadapter KR1

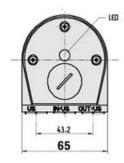


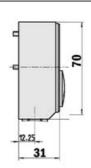


Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild CANopen-Anschlussadapter KR2

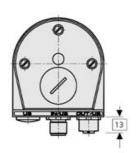


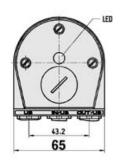


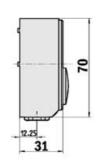


Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild CANopen-Anschlussadapter KR3



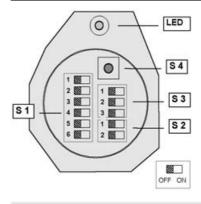




Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild CANopen-Anschlussadapter SR2

Allgemeintoleranzen nach DIN ISO 2768-mk


Bestell-Information							
BTF CANopen-Anschlussadapter							
Тур	Bestell-Nr.	Beschreibung					
AD-ATM60-KR1CO	2 029 230	Anschlussadapter KR1, 1 x PG					
AD-ATM60-KR2CO	2 029 231	Anschlussadapter KR2, 2 x PG					
AD-ATM60-KR3CO	2 029 232	Anschlussadapter KR3, 3 x PG					
AD-ATM60-SR2CO	2 020 935	Anschlussadapter SR2, 2 x M12, 5-pol.					

1 PIN- und Aderbelegung für Anschlussadapter				
Klemmleiste	Gerätestecker	Signal	Erklärung	
1	1	Shield	Schirm	
2	2	U _s (24 V)	Betriebsspannung 10 32 V	
3	3	GND (COM)	O V (Gnd)	
4	4	CANH	CAN-Bus-Signal HIGH	
5	5	CANL	CAN-Bus-Signal LOW	
6		CANH	CAN-Bus-Signal HIGH	
7		CANL	CAN-Bus-Signal LOW	
8		GND (COM)	O V (Gnd)	
9	·	U _s (24 V)	Betriebsspannung 10 32 V	

1	Encoder mit einem CAN-Bus Anschluss-
	adapter besitzen Verschraubungen
	(metrisch/PG) zum Anschließen der
	Bus- und Versorgungsleitungen.
	Zum Anschluss der Leitungen wird der
	Anschlussadapter vom Komplettgerät ab-
	geschraubt. Die Abbildung (S. 142, links
	unten) zeigt die Anschlussbelegung inner-
	halb des Anschlussadapters.

Siehe S. 142 unten

Schaltereinstellungen

Schaltereinstellungen

Der Zugang für die Bedienung der DIP-Schalter erfolgt über eine Verschraubung auf der Rückseite des Anschlussadapters.

S 1	Adresseinstellung (Node ID)
S 2	Busabschluss
S 3	Baudrate (Data Rate)
S 4	PRESET-Taster (Number SET)

Statusinformation über LED

LED 2-farbig rot/grün CAN Controller Status

Implementierung

CANopen-Funktionalität

Predefined Connection Set

- · Sync-Objekt
- · Emergency-Objekt
- Netzwerk-Management-Objekt (Error Control Services, Boot-Up Service)
- Ein (1) Service-Daten-Objekt (SDO)
- Zwei (2) Prozess-Daten-Objekte (PDO)

I/O-Betriebsarten

- Synchron. -- Abhängig von Sync-Objekt
- Asynchron. -- Triggerung erfolgt zyklisch oder durch Positionsänderung (COS)
- Remote-Anforderung (RTR)

Encoder-Parameter

nach dem Geräteprofil für Encoder:

- Zählrichtung (CW, CCW)
- Skalierungsfunktion (ON, OFF)
- PRESET-Wert
- Schritte pro Umdrehung (SpU) 1...8.192
- Gesamtauflösung (GA) -- 1...67.108.864
 Schritte, mit GA = 2ⁿ x SpU -- (n=0...13)
- · Grenzen für Arbeitsbereich
- · Zyklus-Timer für Asynchron PDOs
- 8 programmierbare Nocken mit oberer/ unterer Schaltschwelle und Hysteresis für die Schaltpunkte
- Allgemeine Diagnose-Parameter (Offset-Wert, Alarme, Warnungen, Version)

Herstellerspezifisches Profil:

- Adresszuordnung: -- Quelle und Werte für Node-ID und Baudrate
- Hysteresis für Positionsänderungen in Betriebsart Async PDOs mit COS
- Grenzwerte und Format f
 ür Geschwindigkeit und Beschleunigung

PDO Data Mapping

Zuordnung von bis zu vier Datenobjekten zu jedem der beiden PDOs. Die Datenlänge für ein PDO ist auf 8 Byte begrenzt.

- (1) Objekt 1/PosW 1) I-1
- (n) Objekt 2 ... Objekt 4 I-1 to I-7

Input-Daten-Objekte

1-1	Positionswert [PosW]	4 Byte
I-2	Status der Nocken	1 Byte
I-3	Status des Arbeitsbereichs	1 Byte
1-4	Alarme	1 Byte
I-5	Warnungen	1 Byte
I-6	Geschwindigkeit	4 Byte
1-7	Beschleunigung	4 Byte

Einstellung: - Adresse (Node ID)

0 bis 63 über DIP-Schalter, oder per Software (gespeichert in EEPROM)

Einstellung: - Baudrate

10k, 20k, 50k, 125k, 250k, 500k, 1 MB über DIP-Schalter, oder per Software (gespeichert in EEPROM)

Einstellung: - Busabschluss

Ein 2-pol. DIP-Schalter ermöglicht das

Zu- und Abschalten eines internen Busabschlusses (ON/OFF). Wird der Bus extern terminiert, bleibt DIP-Schalter in Stellung OFF.

Einstellung: - PRESET-Wert

Die PRESET-Funktion dient zur Inbetriebnahme und der Zuordnung eines bestimmten Positionswertes zur aktuellen physikalischen Winkelstellung.

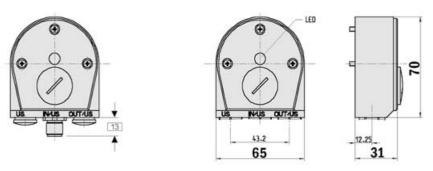
Folgende Einstellungen sind möglich:

- per Hardware (PRESET-Taster)
- per Software (CANopen-Protokoll)

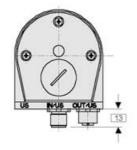
Gerätekonfiguration

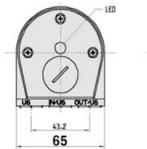
Zur Inbetriebnahme des Encoders durch ein Konfigurationswerkzeug dient die EDS-Datei (Electronic Data Sheet). Sie enthält alle notwendigen Merkmale des Gerätes.

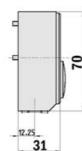
1) Einstellung nicht änderbar


- Wegmessung mittels
- Seilzugmechanik

 Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

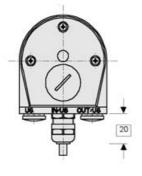

((

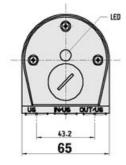

Maßbild DeviceNet-Anschlussadapter SR1

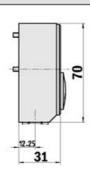


Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild DeviceNet-Anschlussadapter SR2

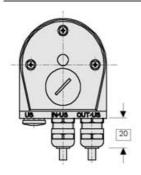


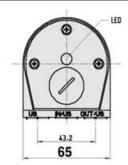


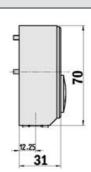


Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild DeviceNet-Anschlussadapter KR1

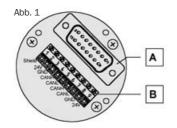






Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild DeviceNet-Anschlussadapter KR2

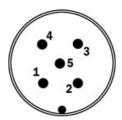


Allgemeintoleranzen nach DIN ISO 2768-mk

Bestell-Information					
BTF DeviceNet-Anschlussadapter					
Тур	Bestell-Nr.	Beschreibung			
AD-ATM60-SR1DN	2 029 226	Anschlussadapter SR1, 1 x M12, 5-pol.			
AD-ATM60-SR2DN	2 029 227	Anschlussadapter SR2, 2 x M12, 5-pol.			
AD-ATM60-KR1DN	2 029 228	Anschlussadapter KR1, 1 x PG			
AD-ATM60-KR2DN	2 029 229	Anschlussadapter KR2, 2 x PG			

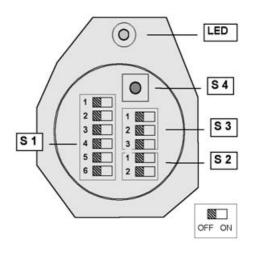
1 PIN- und Aderbelegung für Anschlussadapter

Klemmleiste	Gerätestecker	Signal	Erklärung
1	1	Shield	Schirm
2	2	U _s (24 V)	Betriebsspannung 10 32 V
3	3	GND (COM)	O V (Gnd)
4	4	САЛн	CAN-Bus-Signal HIGH
5	5	CANL	CAN-Bus-Signal LOW
6		САЛн	CAN-Bus-Signal HIGH
7		CANL	CAN-Bus-Signal LOW
8		GND (COM)	0 V (Gnd)
9	·	U _s (24 V)	Betriebsspannung 10 32 V



Encoder mit einem DeviceNet-Anschlussadapter besitzen Verschraubungen (metrisch/PG) zum Anschließen der Busund Versorgungsleitungen.

Zum Anschluss der Leitungen wird der Anschlussadapter vom Komplettgerät abgeschraubt. Die Abb.1 zeigt die Anschlussbelegung innerhalb des Anschlussadapters.


- A Interne Steckverbindung zum Encoder
- **B** Externe Verbindungen zum Bus

 $\begin{tabular}{ll} {\tt OUT/U_S~(Buchse)} & {\tt IN/U_S~(Stift)} \\ & {\tt Ger\"{a}testecker~M12~(Anschlussadapter)} \\ \end{tabular}$

Schaltereinstellungen

Schaltereinstellungen

Der Zugang für die Bedienung der DIP-Schalter erfolgt über eine Verschraubung auf der Rückseite des Anschlussadapters.

S 1	Adresseinstellung	(Node ID)	
3 I	Auressemstemung	(INOUE ID)	

S 2 Busabschluss

S 3 Baudrate (Data Rate)

S 4 PRESET-Taster (Number SET)

Statusinformation (NS) über LED

LED 2-farbig rot/grün

Netzwerk Status Kommunikation

Implementierung

DN-Funktionalität

Objektmodell

- · Identity Object
- · Message Router Object
- · DeviceNet Object
- · Assembly Object
- · Connection Object
- Acknowledge Handler Object
- · Encoder Object

I/O-Betriebsarten

- Polling
- · Change of State/Cyclic
- Bit Strobe

Encoder-Parameter

Umsetzung des "Encoder Profile" unter Verwendung des "Encoder Object"

- Zählrichtung (CW, CCW)
- Skalierungsfunktion (ON, OFF)
- PRESET-Wert
- Hysteresis für Positionsänderungen in Betriebsart "Change of State"
- Schritte pro Umdrehung (SpU) 1...8.192
- Gesamtauflösung (GA) -- 1...67.108.864
 Schritte, mit GA = 2ⁿ x SpU -- (n=0...13)
- Grenzen für Arbeitsbereich (Software Endschalter)
- Grenzwerte und Format für Geschwindigkeit und Beschleunigung
- 8 programmierbare Nocken mit oberer/ unterer Schaltschwelle und Hysteresis für die Schaltpunkte
- Allgemeine Diagnose-Parameter (Offset-Wert, Alarme, Warnungen, Version)

Herstellerspezifische Parameter:

- Zuordnung der I/O Daten Assembly zu den jeweiligen Betriebsarten
- Diagnosedaten für maximale Werte des Encoders
- · Gerätespezifische Daten

I/O Data Assembly

Τ)	POSW +)	I-T
2)	PosW + Flag	I-1, I-2
3)	PosW + Geschwindigkeit	I-1, I-3
4)	PosW + Status Nocken	I-1, I-4

Input Daten Objekte

I-1	Positionswert [PosW]	4 Byte
I-2	Flag (Alarm, Warning)	1 Byte
I-3	Geschwindigkeit	4 Byte
1-4	Status Nocken	1 Byte

Einstellung: - Adresse (Node ID)

0 to 63 über DIP-Schalter

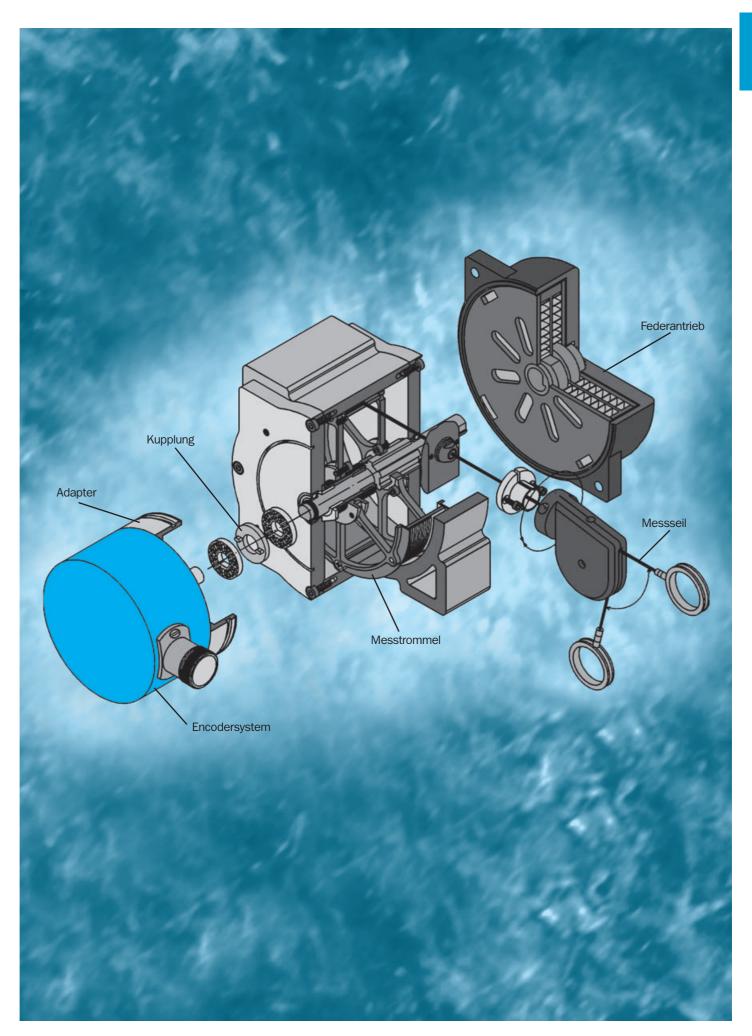
Einstellung: - Baudrate

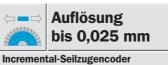
125kb, 250kb, 500kb über DIP-Schalter

Einstellung: - Busabschluss

Ein 2-pol. DIP-Schalter ermöglicht das Zu- und Abschalten eines internen Busabschlusses (ON/OFF). Wird der Bus extern terminiert, bleibt DIP-Schalter in Stellung OFF.

Einstellung: - PRESET-Wert


Die PRESET-Funktion dient zur Inbetriebnahme, und der Zuordnung eines bestimmten Positionswertes zur aktuellen physikalischen Winkelstellung. Folgende Einstellungen sind möglich:

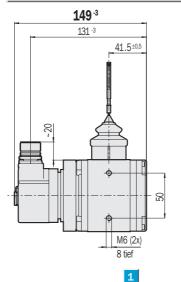

- per Hardware (PRESET-Taster)
- per Software (DeviceNet-Protokoll)

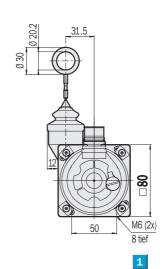
Gerätekonfiguration

Zur Inbetriebnahme des Encoders durch ein Konfigurationswerkzeug dient die EDS-Datei (Electronic Data Sheet). Sie enthält alle notwendigen Merkmale des Gerätes.

1) Default-Einstellung

- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

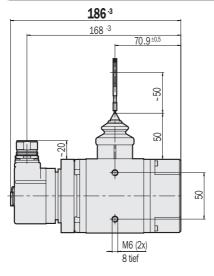


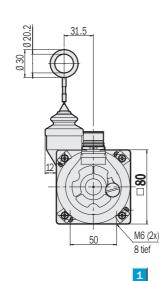


Ansicht Gerätestecker M23 am Encoder

Siehe Kapitel Zubehör Encoder-Zubehör

Maßbild Seilzugencoder PRF08 TTL, HTL, Messlänge 2 m





Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

Maßbild Seilzugencoder PRF08 TTL, HTL, Messlänge 3 m

Gewindesackloch zur Befestigung

Signal

PIN- und Aderbelegung

PIN

8

9

10

11

12

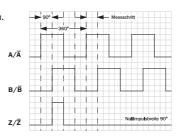
1

Allgemeintoleranzen nach DIN ISO 2768-mk

Erklärung

		(Leitungsabgang)	
1	Ā	schwarz	Signalleitung
2	Sense +	grau	intern mit U _s verbunden
3	Z	lila	Signalleitung
4	Z	gelb	Signalleitung
5	В	weiß	Signalleitung
6	B	braun	Signalleitung
7	N. C.		nicht belegt

Farbe der Adern


rosa Signalleitung Schirm Gehäusepotential GND blau Masseanschluss Sense grün intern mit GND verbunden U_{s} rot Versorgungsspannung 1)

1) Potentialfrei zum Gehäuse

N. C. = Not Connected

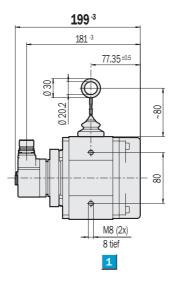
Technische Daten	PRF08	TTL	TTL	HTL	TTL	TTL	HTL	
		2m	2m	2m	3 m	3m	3m	
Trommelgehäuse	Aluminium eloxiert						1	T
Federgehäuse	Zink-Druckguss							
Messseil (rostfrei)	hoch flexible Stahllitze Ø 1,35 mm							1
Messlänge	max. 2 m				1			-
	max. 3 m							1
Masse	ca. 1,6 kg				1			-
	ca. 1,8 kg							4
Elektrische Schnittstellen	TTL/RS422, 6-Kanal							-
	HTL/push-pull, 6-Kanal							1
Messschritt	0,025 mm 1							1
Referenzsignal	Anzahl 1/Lage 90°							1
Linearität	typ. 0,05 %							1
Wiederholbarkeit	± 1 Messschritt							1
Verstellgeschwindigkeit	4 m/sec.							1
Federrückzugskraft (typ.)								
Anfang/Ende 1)	6 N/14 N							1
Arbeitstemperaturbereich	- 20 + 70 °C							1
Lagerungstemperaturbereich	- 40 + 100 °C							1
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen							1
EMV 3)								1
Widerstandsfähigkeit								
gegenüber Schocks ⁴⁾	50/11 g/ms							4
gegenüber Vibration 5)	20/10 150 g/Hz							1
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)							
	IP 65 (Encoder)							
Betriebsspannungsbereich (U _s)	<u> </u>							
Laststrom TTL/RS422, 4,5 5,5 V	max. 20 mA					1		
TTL/RS422, 4,5 3,5 V	max. 20 mA						1	
HTL/push-pull, 10 32 V					1			1
Betriebsstrom ohne Last								
pei 5 V	typ. 120 mA					ī		
pei 10 32 V	typ. 120 mA							1
Betätigung Set-Knopf ⁶⁾	typ. 100 mA ≥ 100 ms							<u> </u>
setatigung Set-Knopt o	≥ 100 ms 40 ms							
muansiciungszeit nach Power on	40 III3					1		1

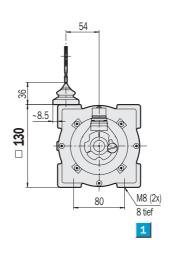
- $^{\rm 1)}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.
- 2) Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.
- $^{\rm 3)}\,$ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- ⁴ Nach DIN EN 60068-2-27
- 5) Nach DIN EN 60068-2-6
- 6) Nur bei stehender Welle.

Ausgehend davon, dass die Steuerung/der Zähler eine Flankenauswertung der A + B Impulse vornimmt.

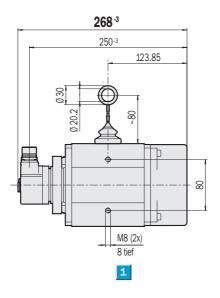
Bestell-Information						
PRF08; Gerätestecker M 23, 12-polig						
Тур	Bestell-Nr.	Beschreibung				
PRF08-A1AM0240	1 034 323	TTL 4,5 5,5 V; Messlänge 2 m				
PRF08-C1AM0240	1 034 329	TTL 10 32 V; Messlänge 2 m				
PRF08-E1AM0240	1 034 335	HTL 10 32 V; Messlänge 2 m				
PRF08-A1AM0340	1 034 896	TTL 4,5 5,5 V; Messlänge 3 m				
PRF08-C1AM0340	1 034 897	TTL 10 32 V; Messlänge 3 m				
PRF08-E1AM0340	1 034 898	HTL 10 32 V; Messlänge 3 m				

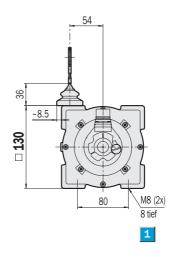
- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl


ϵ



Ansicht Gerätestecker M23 am Encoder


Siehe Kapitel Zubehör Encoder-Zubehör

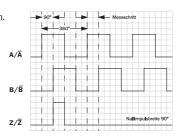

Maßbild Seilzugencoder PRF13 TTL, HTL, Messlänge 5 m

Maßbild Seilzugencoder PRF13 TTL, HTL, Messlänge 10 m

1 Gewindesackloch zur Befestigung

DIN und Adorhologung

Allgemeintoleranzen nach DIN ISO 2768-mk

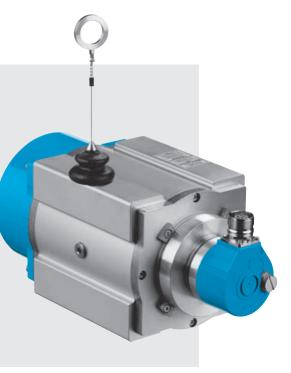

PIN- una A	aerbeiegung		
PIN	Signal	Farbe der Adern	Erklärung
		(Leitungsabgang)	
1	Ā	schwarz	Signalleitung
2	Sense +	grau	intern mit U _s verbunden
3	Z	lila	Signalleitung
4	Z	gelb	Signalleitung
5	В	weiß	Signalleitung
6	B	braun	Signalleitung
7	N. C.		nicht belegt
8	А	rosa	Signalleitung
9	Schirm		Gehäusepotential
10	GND	blau	Masseanschluss
11	Sense –	grün	intern mit GND verbunden
12	U _s	rot	Versorgungsspannung 1)
			1) Potontialfrai zum Cahäusa

Potentialfrei zum Gehäuse

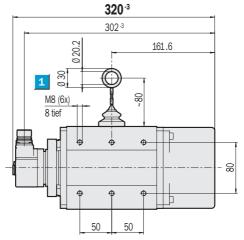
N. C. = Not Connected

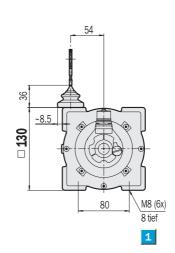
Technische Daten	PRF13	TTL	TTL	HTL	TTL	TTL	HTL			
		5m	5m	5m	10 m	10 m	10 m			
Frommelgehäuse	Aluminium eloxiert							1		
-edergehäuse	Kunststoff								 	
Messseil (rostfrei)	hoch flexible Stahllitze Ø 1,35 mm								 	
Messlänge	max. 5 m								 	
-	max. 10 m								 	
Masse	ca. 3,1 kg									
	ca. 3,8 kg								 	
Elektrische Schnittstellen	TTL/RS422, 6-Kanal									
<u> </u>	HTL/push-pull, 6-Kanal								 	
Viessschritt	0,05 mm 1									
Referenzsignal	Anzahl 1/Lage 90°									
inearität	typ. 0,05 %									
Viederholbarkeit	± 1 Messschritt									
/erstellgeschwindigkeit	4 m/sec.							1		
Federrückzugskraft (typ.)				_					 	_
Anfang/Ende 1)	15 N/20 N				1				 	_
Anfang/Ende 1)	10 N/20 N		_						 	
Arbeitstemperaturbereich	− 20 + 70 °C								 	
agerungstemperaturbereich	− 40 + 100 °C								 	
ebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen								 	
EMV 3)									 	
Viderstandsfähigkeit									 	
gegenüber Schocks 4)	50/11 g/ms								 	
gegenüber Vibration 5)	20/10 150 g/Hz								 	
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)									
	IP 65 (Encoder)									
Betriebsspannungsbereich (U _s)									 	
aststrom TTL/RS422, 4,5 5,5 V	max. 20 mA									
TTL/RS422, 10 32 V	max. 20 mA								 	
HTL/push-pull, 10 32 V	max. 60 mA								 	
Betriebsstrom ohne Last										
pei 5 V	typ. 120 mA									
pei 10 32 V	typ. 100 mA								 	
Betätigung Set-Knopf ⁶⁾	≥ 100 ms									
	40 ms							, —	 	

- $^{1\!\!/}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.
- ²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.
- $^{\rm 3)}\,$ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- ⁴ Nach DIN EN 60068-2-27
- 5) Nach DIN EN 60068-2-6
- 6) Nur bei stehender Welle.

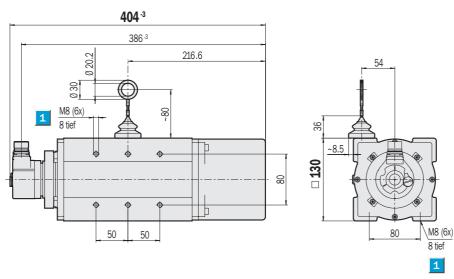


Ausgehend davon, dass die Steuerung/der Zähler eine Flankenauswertung der A + B Impulse vornimmt.


Bestell-Information								
PRF13; Gerätestecker M23, 12-polig								
Тур	Bestell-Nr.	Beschreibung						
PRF13-A1AM0520	1 034 324	TTL 4,5 5,5 V; Messlänge 5 m						
PRF13-C1AM0520	1 034 330	TTL 10 32 V; Messlänge 5 m						
PRF13-E1AM0520	1 034 336	HTL 10 32 V; Messlänge 5 m						
PRF13-A1AM1020	1 034 325	TTL 4,5 5,5 V; Messlänge 10 m						
PRF13-C1AM1020	1 034 331	TTL 10 32 V; Messlänge 10 m						
PRF13-E1AM1020	1 034 337	HTL 10 32 V; Messlänge 10 m						



- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl



Maßbild Seilzugencoder PRF13 TTL, HTL, Messlänge 20 m

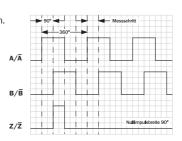
Maßbild Seilzugencoder PRF13 TTL, HTL, Messlänge 30 m

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

((

Ansicht Gerätestecker M23 am Encoder


Siehe Kapitel Zubehör	
Encoder-Zuhehör	

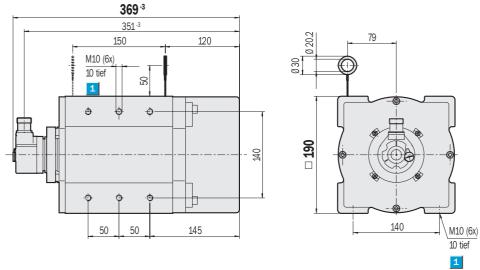
PIN- und A	derbelegung		
PIN	Signal	Farbe der Adern (Leitungsabgang)	Erklärung
1	Ā	schwarz	Signalleitung
2	Sense +	grau	intern mit U _s verbunden
3	Z	lila	Signalleitung
4	Z	gelb	Signalleitung
5	В	weiß	Signalleitung
6	B	braun	Signalleitung
7	N. C.		nicht belegt
8	А	rosa	Signalleitung
9	Schirm		Gehäusepotential
10	GND	blau	Masseanschluss
11	Sense -	grün	intern mit GND verbunden
12	U _s	rot	Versorgungsspannung 1)
		·	1) Potentialfrei zum Gehäuse

N. C. = Not Connected

Technische Daten	PRF13	TTL 20m	TTL 20m	HTL 20m	TTL	TTL	HTL 30m		
		20 m	20 m	20 m	30m	30m	30m		
Trommelgehäuse	Aluminium eloxiert							1	
Federgehäuse	Kunststoff							1	
Messseil (rostfrei)	hoch flexible Stahllitze Ø 0,81 mm							1	
Messlänge	max. 20 m								
	max. 30 m							f	
Masse	ca. 5,3 kg								
	ca. 6,5 kg								
Elektrische Schnittstellen	TTL/RS422, 6-Kanal								
	HTL/push-pull, 6-Kanal							1	
Messschritt	0,05 mm 1							1	
Referenzsignal	Anzahl 1/Lage 90°							1	
Linearität	typ. 0,05 %								
Wiederholbarkeit	± 1 Messschritt							1	
Verstellgeschwindigkeit	4 m/sec.							1	
Federrückzugskraft (typ.)									
Anfang/Ende 1)	10 N/20 N							ſ	
Arbeitstemperaturbereich	− 20 + 70 °C							1	
Lagerungstemperaturbereich	- 40 + 100 °C							1	
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen							1	
EMV 3)									
Widerstandsfähigkeit									
gegenüber Schocks ⁴⁾	50/11 g/ms							1	
gegenüber Vibration 5)	20/10 150 g/Hz								
Schutzart nach IEC 60529	IP 64 (Seilzugmechanik)								
	IP 65 (Encoder)								
Betriebsspannungsbereich (U _s)									
Laststrom TTL/RS422, 4,5 5,5 V	max. 20 mA					i			
TTL/RS422, 10 32 V	max. 20 mA						1		
HTL/push-pull, 10 32 V	max. 60 mA				1				
Betriebsstrom ohne Last									
pei 5 V	typ. 120 mA					Ī			
pei 10 32 V	typ. 100 mA								
Betätigung Set-Knopf ⁶⁾	≥ 100 ms								
nitialisierungszeit nach Power on	40 ms							1	
. 5								·	

- $^{1\!\!/}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.
- 2) Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.
- ³⁾ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- ⁴ Nach DIN EN 60068-2-27
- 5) Nach DIN EN 60068-2-6
- 6) Nur bei stehender Welle.

Ausgehend davon, dass die Steuerung/der Zähler eine Flankenauswertung der A + B Impulse vornimmt.


Bestell-Information								
PRF13; Gerätestecker M23, 12-polig								
Тур	Bestell-Nr.	Beschreibung						
PRF13-A1AM2020	1 034 326	TTL 4,5 5,5 V; Messlänge 20 m						
PRF13-C1AM2020	1 034 332	TTL 10 32 V; Messlänge 20 m						
PRF13-E1AM2020	1 034 338	HTL 10 32 V; Messlänge 20 m						
PRF13-A1AM3020	1 034 327	TTL 4,5 5,5 V; Messlänge 30 m						
PRF13-C1AM3020	1 034 333	TTL 10 32 V; Messlänge 30 m						
PRF13-E1AM3020	1 034 339	HTL 10 32 V; Messlänge 30 m						

- Wegmessung mittels Seilzugmechanik
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil

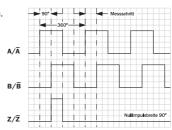
Maßbild Seilzugencoder PRF19 TTL, HTL, Messlänge 50 m

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

((

Ansicht Gerätestecker M23 am Encoder


Siehe Kapitel Zubehör	
Encoder-Zubehör	

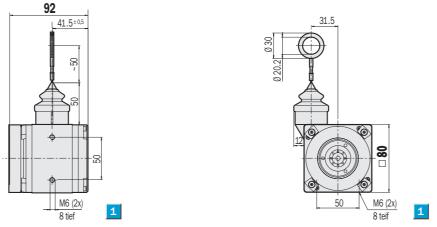
PIN- und A	derbelegung		
PIN	Signal	Farbe der Adern (Leitungsabgang)	Erklärung
1	Ā	schwarz	Signalleitung
2	Sense +	grau	intern mit U _s verbunden
3	Z	lila	Signalleitung
4	Z	gelb	Signalleitung
5	В	weiß	Signalleitung
6	B	braun	Signalleitung
7	N. C.		nicht belegt
8	А	rosa	Signalleitung
9	Schirm		Gehäusepotential
10	GND	blau	Masseanschluss
11	Sense –	grün	intern mit GND verbunden
12	U _s	rot	Versorgungsspannung 1)
			1) Potentialfrei zum Gehäuse

N. C. = Not Connected

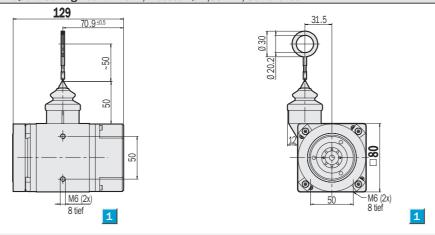
Technische Daten	PRF19	TTL	TTL	HTL				
		50 m	50 m	50 m				
Trommelgehäuse	Aluminium eloxiert				_	 	 	
Federgehäuse	Zink-Druckguss							
Messseil (rostfrei)	hoch flexible Stahllitze Ø 1,35 mm							
Messlänge	max. 50 m							
Masse	ca. 16,8 kg							
Elektrische Schnittstellen	TTL/RS422, 6-Kanal							
	HTL/push-pull, 6-Kanal							
Messschritt	0,1 mm 1							
Referenzsignal	Anzahl 1/Lage 90°							
Linearität	typ. 0,05 %							
Wiederholbarkeit	± 1 Messschritt							
Verstellgeschwindigkeit	4 m/sec.							
Federrückzugskraft								
Anfang/Ende 1)	18 N/37 N							
Arbeitstemperaturbereich	– 20 + 70 °C							
Lagerungstemperaturbereich	– 40 + 100 °C							
Lebensdauer Seilzugmechanik ²⁾	1 Mio. Zyklen							
EMV 3)								
Widerstandsfähigkeit								
gegenüber Schocks ⁴⁾	50/11 g/ms							
gegenüber Vibration 5)	20/10 150 g/Hz						 	
Schutzart nach IEC 60529	IP 31 (Seilzugmechanik)						 	
	IP 65 (Encoder)							
Betriebsspannungsbereich (Us)								
Laststrom TTL/RS422, 4,5 5,5 V	max. 20 mA							
TTL/RS422, 10 32 V	max. 20 mA							
HTL/push-pull, 10 32 V	max. 60 mA							
Betriebsstrom ohne Last								
bei 5 V	typ. 120 mA					 		
bei 10 32 V	typ. 100 mA							
Betätigung Set-Knopf ⁶⁾	≥ 100 ms							
Initialisierungszeit nach Power on	40 ms							

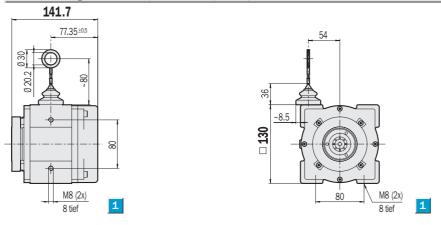
- $^{1\!\!/}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.
- 2) Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.
- ³⁾ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- ⁴ Nach DIN EN 60068-2-27
- 5) Nach DIN EN 60068-2-6
- 6) Nur bei stehender Welle.

Ausgehend davon, dass die Steuerung/der Zähler eine Flankenauswertung der A + B Impulse vornimmt.

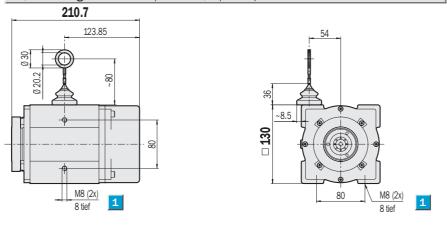

Bestell-Information							
PRF19; Gerätestecker M23, 12-pol	ig						
Тур	Bestell-Nr.	Beschreibung					
PRF19-A1AM5010	1 034 328	TTL 4,5 5,5 V; Messlänge 50 m					
PRF19-C1AM5010	1 034 334	TTL 10 32 V; Messlänge 50 m					
PRF19-E1AM5010	1 034 340	HTL 10 32 V; Messlänge 50 m					

Zubehör Seilzugmechanik MRA-F bis 10 m


- Lineare Wegmessung mit Seilzug
- **■** Einfache Encodermontage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl

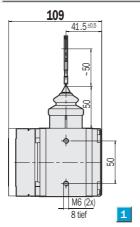

Maßbild Seilzugmechanik 2 m; Messseil Ø 1,35 mm, Servoflansch

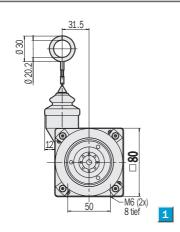
Maßbild Seilzugmechanik 3 m; Messseil Ø 1,35 mm, Servoflansch



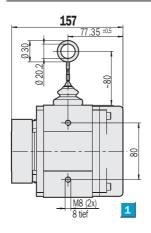
Maßbild Seilzugmechanik 5 m; Messseil Ø 1,35 mm, Servoflansch

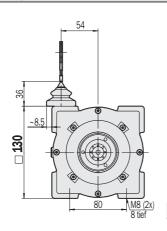
Maßbild Seilzugmechanik 10 m; Messseil Ø 1,35 mm, Servoflansch

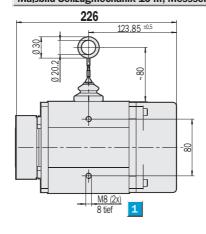

1 Gewindesackloch zur Befestigung

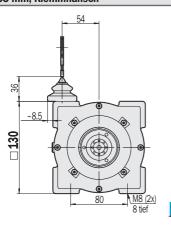


Passend hierzu: Seilführungsrollen und Ersatzteil-Kit (Seite 162)


Allgemeintoleranzen nach DIN ISO 2768-mk


Maßbild Seilzugmechanik 2 m; Messseil Ø 1,35 mm, Klemmflansch




Maßbild Seilzugmechanik 5 m; Messseil Ø 1,35 mm, Klemmflansch

Maßbild Seilzugmechanik 10 m; Messseil Ø 1,35 mm, Klemmflansch

Allgemeintoleranzen nach DIN ISO 2768-mk

(Seite 162)

Seilzugmechanik	Messlänge								
	2 m	3 m	5 m	10 m					
hoch flexible Stahllitze, Ø 1,35 mm									
Aluminium eloxiert									
Zink-Druckguss									
Kunststoff	•								
62,31 mm									
105 mm	-								
ca. 10				-					
ca. 15									
ca. 30									
0,05 %									
4 m/sec.									
6 N/14 N									
15 N/20 N									
10 N/20 N									
− 20 + 70 °C									
IP 64									
1 Mio. Zyklen									
1,3 kg									
1,5 kg									
2,8 kg									
3,5 kg									
	hoch flexible Stahllitze, Ø 1,35 mm Aluminium eloxiert Zink-Druckguss Kunststoff 62,31 mm 105 mm ca. 10 ca. 15 ca. 30 0,05 % 4 m/sec. 6 N/14 N 15 N/20 N 10 N/20 N - 20 + 70 °C IP 64 1 Mio. Zyklen 1,3 kg 1,5 kg 2,8 kg	2 m hoch flexible Stahllitze, Ø 1,35 mm Aluminium eloxiert Zink-Druckguss Kunststoff 62,31 mm 105 mm ca. 10 ca. 15 ca. 30 0,05 % 4 m/sec. 6 N/14 N 15 N/20 N 10 N/20 N - 20 + 70 °C IP 64 1 Mio. Zyklen 1,3 kg 1,5 kg 2,8 kg	2 m 3 m	2 m 3 m 5 m	2 m 3 m 5 m 10 m	Noch flexible Stahllitze, Ø 1,35 mm	2 m 3 m 5 m 10 m	2 m 3 m 5 m 10 m 10 m hoch flexible Stahllitze, Ø 1,35 mm Image: Control of the control of	2 m 3 m 5 m 10 m

 $^{^{1\!\! /}}$ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.

Absolut-Encoder: Ermittlung der passenden Schrittzahl des Encoders zur gewünschten Linearauflösung

Encoderschrittzahl pro Umdrehung = 3,1416 x (Trommeldurchmesser + Seildurchmesser)

Linearauflösung pro Messschritt

Beispiel: Gewünschte Linearauflösung 0,05 mm; Seilzugmechanik 5 m

Incremental-Encoder: Ermittlung der passenden Impulszahl des Encoders zur gewünschten Linearauflösung

Encoderimpulszahl pro Umdrehung = 3,1416 x (Trommeldurchmesser + Seildurchmesser) 1

4 x Linearauflösung pro Messschritt

Beispiel: Gewünschte Linearauflösung 0,025 mm; Seilzugmechanik 2 m

Encoderimpulszahl pro Umdrehung = $\frac{3,1416 \times (62,31 \text{ mm} + 1,35 \text{ mm})}{4 \times 0,025 \text{ mm}} = 2000$

4 Ausgehend davon, dass die Steuerung/der Zähler eine Flankenauswertung der A+B Impulse vornimmt.

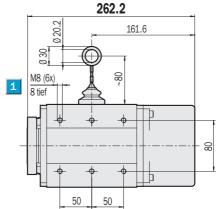
6 028 627

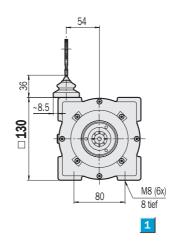
Bestell-Information					
MRA-F Seilzugmechanik für den Anbau von Encodern mit Servoflansch					
(oder kompatiblen Flanschen)					
Тур	Bestell-Nr.	Beschreibung			
MRA-F080-102D2	6 028 625	Messlänge 2 m			
MRA-F080-103D2	6 030 125	Messlänge 3 m			
MRA-F130-105D2	6 028 626	Messlänge 5 m			

MRA-F130-110D2

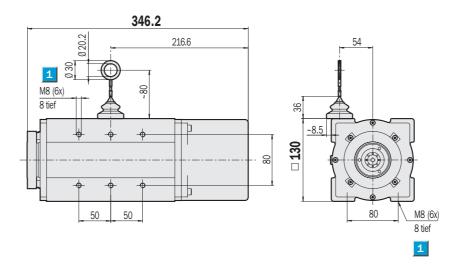
Bestell-Information					
MRA-F Seilzugmechanik für den Anbau von Encodern mit Klemmflansch					
(oder kompatiblen Flanschen)					
Тур	Bestell-Nr.	Beschreibung			
MRA-F080-402D2	6 029 788	Messlänge 2 m			
MRA-F130-405D2	6 029 789	Messlänge 5 m			
MRA-F130-410D2	6 029 790	Messlänge 10 m			

L58 SENSICK KATALOG 24-04-2006

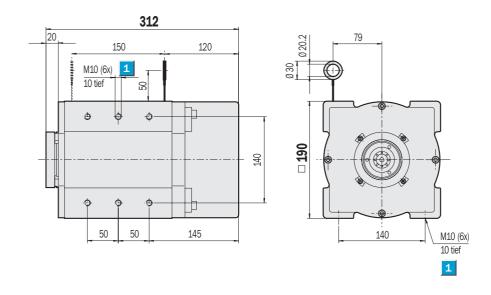

Messlänge 10 m


²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

- Lineare Wegmessung mit Seilzug
- Einfache Encodermontage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Schmutzabstreifer aus Stahl



Maßbild Seilzugmechanik 20 m; Messseil Ø 0,81 mm, Servoflansch

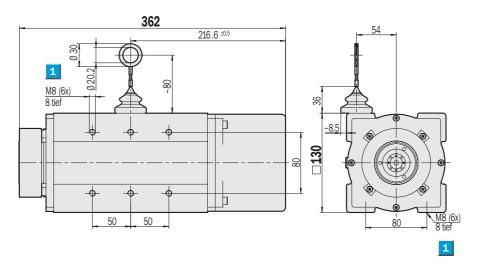


Maßbild Seilzugmechanik 30 m; Messseil Ø 0,81 mm, Servoflansch

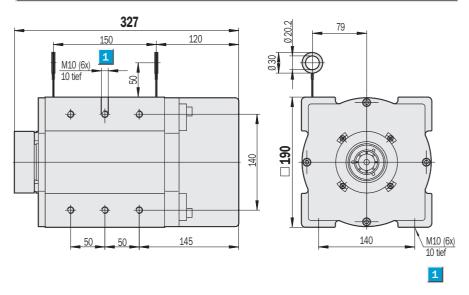
Maßbild Seilzugmechanik 50 m; Messseil Ø 1,35 mm, Servoflansch

Passend hierzu: Seilführungsrollen und Ersatzteil-Kit (Seite 162)

Gewindesackloch zur Befestigung


Allgemeintoleranzen nach DIN ISO 2768-mk

Zubehör Seilzugmechanik MRA-F > 10 m bis 50 m


Maßbild Seilzugmechanik 20 m; Messseil Ø 0,81 mm, Klemmflansch

Maßbild Seilzugmechanik 30 m; Messseil Ø 0,81 mm, Klemmflansch

Maßbild Seilzugmechanik 50 m; Messseil Ø 1,35 mm, Klemmflansch

Passend hierzu: Seilführungsrollen und Ersatzteil-Kit (Seite 162)

1 Gewindesackloch zur Befestigung

Allgemeintoleranzen nach DIN ISO 2768-mk

Technische Daten	Seilzugmechanik	Messlänge
	<u> </u>	20 m 30 m 50 m
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 0,81 mm	
	hoch flexible Stahllitze, Ø 1,35 mm	
Trommelgehäuse	Aluminium eloxiert	
Federgehäuse	Kunststoff	
	Zink-Druckguss	
Trommeldurchmesser	105 mm	
	155,1 m	
Anzahl Umdrehungen für Vollauszug	ca. 61	
	ca. 91	
	ca. 102	
Trommelgenauigkeit	0,05 %	
Verstellgeschwindigkeit	4 m/sec.	
Federrückzugskraft (typ.)		
Anfang/Ende 1)	10 N/20 N	
Anfang/Ende 1)	18 N/37 N	
Arbeitstemperaturbereich	– 20 + 70 °C	
Schutzart nach IEC 60529	IP 64	
	IP 31	
Lebensdauer ²⁾	1 Mio. Zyklen	
Masse	5,0 kg	
	6,2 kg	
	16,5 kg	

Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.

Absolut-Encoder: Ermittlung der passenden Schrittzahl des Encoders zur gewünschten Linearauflösung

Encoderschrittzahl pro Umdrehung = 3,1416 x (Trommeldurchmesser + Seildurchmesser)

Linearauflösung pro Messschritt

Beispiel: Gewünschte Linearauflösung 0,05 mm; Seilzugmechanik 30 m

Encoderschrittzahl pro Umdrehung = 3,1416 x (105 mm + 0,81 mm) = 6648

Incremental-Encoder: Ermittlung der passenden Impulszahl des Encoders zur gewünschten Linearauflösung

Encoderimpulszahl pro Umdrehung = 3,1416 x (Trommeldurchmesser + Seildurchmesser) 1

4 x Linearauflösung pro Messschritt

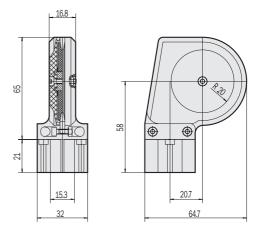
Beispiel: Gewünschte Linearauflösung 0,05 mm; Seilzugmechanik 20 m

Encoderimpulszahl pro Umdrehung = 3,1416 x (105 mm + 0,81 mm) = 1662

1 Ausgehend davon, dass die Steuerung/der Zähler eine Flankenauswertung der A+B Impulse vornimmt.

Bestell-Information					
MRA-F Seilzugmechanik für den Anbau von Encodern mit Servoflansch					
(oder kompatiblen Flanschen)					
Тур	Bestell-Nr.	Beschreibung			
MRA-F130-120D1	6 028 628	Messlänge 20 m			
MRA-F130-130D1	6 028 629	Messlänge 30 m			
MRA-F190-150D2	6.028.630	Messlänge 50 m			

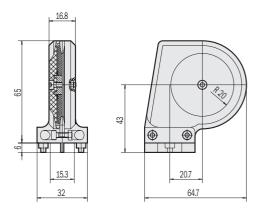
Bestell-Information					
MRA-F Seilzugmechanik für den Anbau von Encodern mit Klemmflansch					
(oder kompatiblen Flanschen)	(oder kompatiblen Flanschen)				
Тур	Bestell-Nr.	Beschreibung			
MRA-F130-420D1	6 029 791	Messlänge 20 m			
MRA-F130-430D1	6 029 792	Messlänge 30 m			
MRA-F190-450D2	6 029 793	Messlänge 50 m			


²⁾ Mittelwerte, die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.

Zubehör Befestigungstechnik für BTF/PRF und MRA-F

Maßbilder und Bestell-Informationen

Seilführungsrolle für Seilzugmechanik 2 m und 3 m


Тур	Bestell-Nr.		
MRA-F080-R	6 028 632		

Allgemeintoleranzen nach DIN ISO 2768-mk

Seilführungsrolle für Seilzugmechanik 5 m, 10 m, 20 m und 30 m

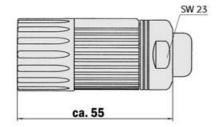
Typ Bestell-Nr.	
MRA-F130-R	6 028 631

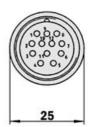
Allgemeintoleranzen nach DIN ISO 2768-mk

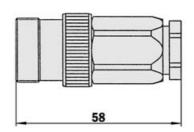
Ersatzteil-Kit für alle Seilzugmechanik-Ausführungen

Тур	Bestell-Nr.	Beschreibung
MRA-F-K	6 028 633	Montagekleinteile: 4 Servoklammern + Schrauben, 3 Schrauben M4 x 8, Kupplung,
		2 Dichtringe für Seilzugmechaniken zum Anbau von Encodern mit Servoflansch
MRA-F-L	6 030 124	Montagekleinteile: 4 Servoklammern + Schrauben, 3 Schrauben M4 x 8, Kupplung,
		2 Dichtringe für Seilzugmechaniken zum Anbau von Encodern mit Klemmflansch


Rund-Schraubsystem M23, 12-polig für Seilzugencoder BTF mit SSI-Schnittstelle


Leitungsdose M23, 12-polig, gerade, geschirmt


Тур	Bestell-Nr.	Kontakte
DOS-2312-G	6 027 538	12


Leitungsstecker M23, 12-polig, gerade, geschirmt

Тур	Bestell-Nr.	Kontakte
STE-2312-G	6 027 537	12

Leitungsdose M23, 12-polig, gerade, Leitung 12-adrig, 4 x 2 x 0,25 + 2 x 0,5 + 2 x 0,14 mm² mit Abschirmung, schlepptauglich,

Leitungsdurchmesser 7,8 mm für Seilzugencoder BTF mit SSI-Schnittstelle

Тур	Bestell-Nr.	Kontakte	Leitungslänge
DOL-2312-G1M5MA1	2 029 200	12	1,5 m
DOL-2312-G03MMA1	2 029 201	12	3,0 m
DOL-2312-G05MMA1	2 029 202	12	5,0 m
DOL-2312-G10MMA1	2 029 203	12	10,0 m
DOL-2312-G20MMA1	2 029 204	12	20,0 m
DOL-2312-G30MMA1	2 029 205	12	30,0 m

Leitung 8-adrig, Meterware, 4 x 2 x 0,15 mm² mit Abschirmung,

Leitungsdurchmesser 5,6 mm

für Seilzugencoder BTF mit SSI-Schnittstelle

Тур	Bestell-Nr.	Adern	
LTG-2308-MW	6 027 529	8	

Leitung 11-adrig, Meterware, 4 x 2 x 0,25 + 2 x 0,5 + 1 x 0,14 mm²
mit Abschirmung, Leitungsdurchmesser 7,5 mm
für Seilzugencoder BTF mit SSI-Schnittstelle

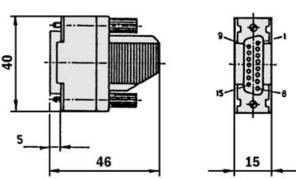
Тур	Bestell-Nr.	Adern	
LTG-2411-MW	6 027 530	11	

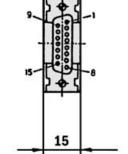
$\textbf{Leitung 12-adrig, Meterware, 4 x 2 x 0,} \textbf{25 + 2 x 0,} \textbf{5 + 2 x 0,} \textbf{14 mm} \textbf{2 mit Abschirmung, schlepptauglich, Leitungsdurchmesser 7,} \textbf{8 mit Abschirmung, schlepptauglich, s$

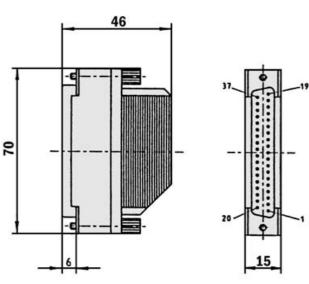
für Seilzugencoder BTF mit SSI-Schnittstelle

Тур	Bestell-Nr.	Adern	Beschreibung
LTG-2512-MW	6 027 531	12	
LTG-2612-MW	6 028 516	12	UV- und salzwasserbeständig

Adaptermodule für Seilzugencoder BTF mit SSI-Schnittstelle


Seriell-Parallel-Adapter Тур Bestell-Nr. Beschreibung AD-SSIG-PA 1 030 106 SSI-Parallel-Adaptermodul, im Kunststoffgehäuse AD-SSI-PA 1 030 107 SSI-Parallel-Adaptermodul, ohne Kunststoffgehäuse AD-SSIPG-PA 1 030 108 SSI-Parallel-Adaptermodul, programmierbar, im Kunststoffgehäuse SSI-Parallel-Adaptermodul, programmierbar, ohne Kunststoffgehäuse, mit $\overline{\mbox{Frontplatte}}$ AD-SSIPF-PA 1 030 109 AD-SSIP-PA 1 030 110 SSI-Parallel-Adaptermodul, programmierbar, ohne Kunststoffgehäuse, ohne Frontplatte


Programming Tool für programmierbare Seriell-Parallel-Adapter


Тур	Bestell-Nr.	
PGT-02-S	1 030 112	

Stecksystem Sub-D für Seriell-Parallel-Adapter

Leitungsstecker Sub-D, 15-polig, gerade, abgeschirmt		Leitungsdose Sub-D, 37-polig, gerade, abgeschirmt					
Тур	Bestell-Nr.	Kontakte		Тур	Bestell-Nr.	Kontakte	
STE-0D15-G	2 029 223	15		DOS-0D37-G	2 029 224	37	

Allgemeintoleranzen nach DIN ISO 2768-mk

164

Allgemeintoleranzen nach DIN ISO 2768-mk

Rund-Schraubsystem M12 für Seilzugencoder BTF mit Profibus-Schnittstelle

Тур	Bestell-Nr.	Kontakte	Beschreibung
DOS-1204-G	6 007 302	4	Leitungsdose, M12, 4-polig, gerade

SENSICK Rundsteckverbinder M12, konfektionierbar für Busleitung (BTF mit Profibus-Schnittstelle)

Тур	Bestell-Nr.	Beschreibung
PR-DOS-1205-G	6 021 353	Profibus Leitungsdose, M12, 5-polig, gerade, geschirmt, B-Kodierung
PR-STE-1205-G	6 021 354	Profibus Leitungsstecker, M12, 5-polig, gerade, geschirmt, B-Kodierung

SENSICK Leitungsdose M12, 4-polig, gerade für Betriebsspannung (BTF mit Profibus-Schnittstelle)

Тур	Bestell-Nr.	Beschreibung
DOL-1204-G05M	6 009 866	Leitung 5 m, PVC

SENSICK Leitungsdose M12, 5-polig, gerade, Leitung 2-adrig, mit Abschirmung für Seilzugencoder BTF mit Profibus-Schnittstelle

Тур	Bestell-Nr.	Beschreibung
DOL-12PR-G05M	6 026 006	Profibusleitung 5 m, B-Kodierung
DOL-12PR-G10M	6 026 007	Profibusleitung 10 m, B-Kodierung

SENSICK Leitungsstecker M12, 5-polig, gerade, Leitung 2-adrig, mit Abschirmung für Seilzugencoder BTF mit Profibus-Schnittstelle

Тур	Bestell-Nr.	Beschreibung
STL-12PR-G05M	6 026 005	Profibusleitung 5 m, B-Kodierung
STL-12PR-G10M	6 026 008	Profibusleitung 10 m, B-Kodierung

Bus-Leitung 2-adrig, Meterware, mit Abschirmung, für BTF mit Profibus-Schnittstelle

Тур	Bestell-Nr.	Adern
LTG-2102-MW	6 021 355	2

Rund-Schraubsystem M12, 5-polig für Seilzugencoder BTF mit DeviceNet-Schnittstelle

Leitungsdose M12, 5-polig, gerade, abgeschirmt				Leitungsstecker M12, 5-polig, gerade, abgeschirmt			
Тур	Bestell-Nr.	Kontakte		Тур	Bestell-Nr.	Kontakte	
DOS-1205-G	6027534	5		STE-1205-G	6027533	5	

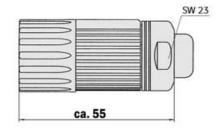
Rund-Schraubsystem M23, 12-polig für Seilzugencoder PRF mit TTL-/HTL-Schnittstelle

Leitungsdose M23, 12-polig, gerade

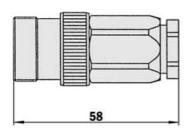

 Bestell-Nr.
 Kontakte

 6 027 538
 12

Leitungsstecker M23, 12-polig, gerade


 Typ
 Bestell-Nr.
 Kontakte

 STE-2312-G
 6 027 537
 12



Тур

DOS-2312-G

Leitungsdose M23, 12-polig, gerade, Leitung 12-adrig, $4 \times 2 \times 0.25 + 2 \times 0.5 + 2 \times 0.14$ mm² mit Abschirmung, schlepptauglich, Leitungsdurchmesser 7,8 mm für Seilzugencoder PRF mit TTL-/HTL-Schnittstelle

Тур	Bestell-Nr.	Kontakte	Leitungslänge
DOL-2312-G1M5MA3	2 029 212	12	1,5 m
DOL-2312-G03MMA3	2 029 213	12	3,0 m
DOL-2312-G05MMA3	2 029 214	12	5,0 m
DOL-2312-G10MMA3	2 029 215	12	10,0 m
DOL-2312-G20MMA3	2 029 216	12	20,0 m
DOL-2312-G30MMA3	2 029 217	12	30,0 m

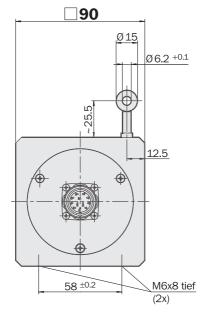
Leitung 8-adrig, Meterware, 4 x 2 x 0,15 mm ² mit Abschirmung,
Leitungsdurchmesser 5,6 mm
für Seilzugencoder PRF mit TTL-/HTL-Schnittstelle

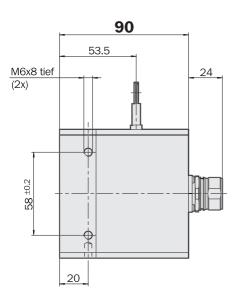
Тур	Bestell-Nr.	Adern			
LTG-2308-MW	6 027 529	8			

Leitung 11-adrig, Meterware, $4 \times 2 \times 0.25 + 2 \times 0.5 + 1 \times 0.14$ mm ²
mit Abschirmung, Leitungsdurchmesser 7,5 mm
für Seilzugencoder PRF mit TTL-/HTL-Schnittstelle

Тур	Bestell-Nr.	Adern		
LTG-2411-MW	6 027 530	11		

Leitung 12-adrig, Meterware, 4 x 2 x 0,25 + 2 x 0,5 + 2 x 0,14 mm² mit Abschirmung, schlepptauglich, Leitungsdurchmesser 7,8 mm


tur Seilzugencoder PRF mit 11L-/ H1L-Schnittstelle							
Тур	Bestell-Nr.	Adern	Beschreibung				
LTG-2512-MW	6 027 531	12					
LTG-2612-MW	6 028 516	12	UV- und salzwasserbeständig				



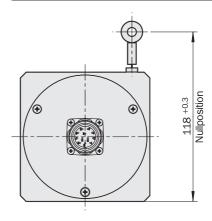
- Äußerst kompakte Bauform
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Robustes Aluminiumgehäuse

Maßbild Seilzugencoder BKS09 SSI, Messlängen 2 m und 5 m $\,$

Allgemeintoleranzen nach DIN ISO 2768-mk

((

Ansicht Gerätestecker M23 am Encoder

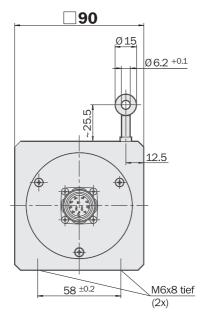

Siehe Kapitel Zubehör
Encoder-Zubehör

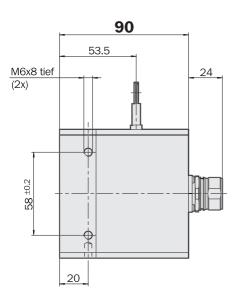
PIN- und Ad	derbelegung		
PIN	Signal	Farbe der Adern	Erklärung
		(Leitungsabgang))
1	GND	blau	Masseanschluss
2	Data +	weiß	Schnittstellensignale
3	Clock +	gelb	Schnittstellensignale
4	N.C.	grau	nicht belegt
5	N.C.	grün	nicht belegt
6	N.C.	rosa	nicht belegt
7	N.C.	schwarz	nicht belegt
8	U _s	rot	Betriebsspannung
9	N.C.	orange	nicht belegt
10	Data –	braun	Schnittstellensignale
11	Clock -	lila	Schnittstellensignale
12	N. C.	orange/schwarz	nicht belegt
	Schirm		Gehäusepotential

Achtung! PINs, die mit N. C. bezeichnet sind, dürfen nicht belegt werden.

Technische Daten	BKS09	SSI	SSI					
2001	51.000	2m	5m					
Gehäuse	Aluminium				 		 	
Messseil (rostfrei)	hoch flexible Stahllitze, Ø 0,6 mm				 		 	
	(PA 12 ummantelt)			l				
Messlänge	max. 2 m				 		 	
	max. 5 m							
Masse	ca. 1,5 kg							
Codeart	24 Bit/Gray							
Codeverlauf	ansteigend bei Seilauszug				 	 	 	
Messschritt	0,05 mm							
Linearität	≤ ± 0,7 mm							
Wiederholbarkeit	± 3 Messschritte							
Verstellgeschwindigkeit	max. 3,5 m/sec.							
Seilbeschleunigung	max. 20m/s ²							
Positionsbildungszeit	0,1 ms							
Federrückzugskraft (typ.)								
Anfang/Ende 1)	5 N/6 N							
Anfang/Ende 1)	4 N/6 N							
Arbeitstemperaturbereich	– 10 + 70 °C				 			
Lagerungstemperaturbereich	− 20 + 80 °C							
Zulässige relative Luftfeuchte 2)	90 %							
Lebensdauer Seilzugmechanik 3)	800.000 Zyklen							
EMV 4)								
Widerstandsfähigkeit								
gegenüber Schocks 5)	20/6 g/ms							
gegenüber Vibration ⁶⁾	10 g (10 2.000 Hz)							
Schutzart nach IEC 60529 7)	IP 52							
Betriebsspannungsbereich (U _s)	12 30 V							
Leistungsaufnahme max. (ohne Las	t) 1,5 W							
Initialisierungszeit ⁸⁾	150 ms							
Schnittstellensignale								
Clock +, Clock -, Data +, Data -	SSI max. Taktfrequenz 1,0 MHz							
	bzw. min. LOW-Pegel (Clock +): 500 ns							

- 1) Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. **Nullposition** Bei anderen Temperaturen kann es zu Abweichungen kommen.
- 2) Betauung nicht zulässig
- $^{\rm 3)}\,$ Mittelwerte die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.
- $^{\rm 4)}\,$ Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- 5) Nach DIN EN 60068-2-27
- 6) Nach DIN EN 60068-2-6
- 7) Vorgeschriebene Einbaulage beachten.
- 8) Ist die Zeit, die nach Anlegen der Versorgungsspannung vergeht, bis das Datenwort korrekt eingelesen werden kann.


Bestell-Information					
BKS09; U _s 12 30 V; Gerätestecker M23, 12-polig					
24 Bit SSI, Gray-Code, Messbereich beginnt bei 0					
Тур	Bestell-Nr.	Beschreibung			
BKS09-ATBM0220	1 035 240	SSI, Messlänge 2 m			
BKS09-ATBM0520	1 035 241	SSI, Messlänge 5 m			



- Äußerst kompakte Bauform
- Hohe Auflösung
- **■** Einfache Montage
- Hoch genaue Messtrommel
- Stabiler Federrückzug
- Hoch flexibles Stahlseil
- Robustes Aluminiumgehäuse

Maßbild Seilzugencoder PKS09 TTL, Messlängen 2 m und 5 m

Allgemeintoleranzen nach DIN ISO 2768-mk

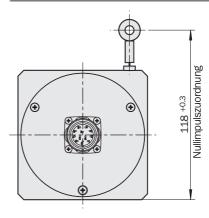
ϵ

Encoder-Zubehör

Ansicht Gerätestecker M23 am Encoder

Siehe Kapitel Zubehör

PIN- und Aderbelegung						
PIN	Signal	Farbe der Adern	Erklärung			
		(Leitungsabgang)				
1	Ā	schwarz	Signalleitung			
2	N. C.	grau	nicht belegt			
3	Z	lila	Signalleitung			
4	Z	gelb	Signalleitung			
5	В	weiß	Signalleitung			
6	B	braun	Signalleitung			
7	N. C.		nicht belegt			
8	А	rosa	Signalleitung			
9	Schirm		Gehäusepotential			
10	GND	blau	Masseanschluss			
11	N.C.	grün	nicht belegt			
12	U _s	rot	Versorgungsspannung ¹⁾			
			1) Potontialfroi zum Gobäuso			


1) Potentialfrei zum Gehäuse

Achtung! PINs, die mit N. C. bezeichnet sind, dürfen nicht belegt werden.

Technische Daten	PKS09	TTL 2m	TTL 5m				
		211	3111				
Gehäuse	Aluminium			1	 	 	
Messseil (rostfrei)	hoch flexible Stahllitze Ø 0,6 mm			1			
	(PA 12 ummantelt)				 	 	
Messlänge	max. 2 m		1				
	max. 5 m			1			
Masse	ca. 1,5 kg					 	
Elektrische Schnittstellen	TTL/RS 422, 6-Kanal					 	
Messschritt	0,05 mm 1				 	 	
Referenzsignal	Anzahl 1/765 Messschritte						
Linearität	≤ ± 0,7 mm					 	
Wiederholbarkeit	± 3 Messschritte					 	
Verstellgeschwindigkeit	max. 3,5 m/sec.						
Seilbeschleunigung	max. 20m/s ²						
Federrückzugskraft (typ.)							
Anfang/Ende 1)	5 N/6 N						
Anfang/Ende 1)	4 N/6 N					 	
Arbeitstemperaturbereich	− 10 + 70 °C						
Lagerungstemperaturbereich	– 20 + 80 °C					 	
Zulässige relative Luftfeuchte ²⁾	90 %					 	
Lebensdauer Seilzugmechanik 3)	800.000 Zyklen					 	
EMV 4)						 	
Widerstandsfähigkeit							
gegenüber Schocks ⁵⁾	20/6 g/ms						
gegenüber Vibration ⁶⁾	10 g (10 2000 Hz)					 	
Schutzart nach IEC 60529 7)	IP 52					 	
Betriebsspannungsbereich (U _s)					 		
TTL/RS 422, 4,5 5,5 V Laststrom	max. 20 mA						
Betriebsstrom ohne Last					 		
bei 5 V	typ. 60 mA				 		
Initialisierungszeit nach Power on	40 ms				 	 	

- ¹⁾ Diese Werte wurden bei 25 °C Umgebungstemperatur gemessen. Bei anderen Temperaturen kann es zu Abweichungen kommen.
- 2) Betauung nicht zulässig
- 3) Mittelwerte die von der Art der Belastung abhängen. Bei schneller Verstellgeschwindigkeit über große Längen kann diese Zahl geringer, bei langsamer Verstellgeschwindigkeit über kleine Längen größer werden.
- 4) Nach DIN EN 61000-6-2 und DIN EN 61000-6-3
- 5) Nach DIN EN 60068-2-27
- 6) Nach DIN EN 60068-2-6
- 7) Vorgeschriebene Einbaulage beachten.

Nullimpulszuordnung

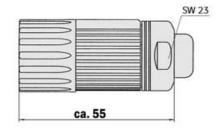
Ausgehend davon, dass die Steuerung/der Zähler eine Flankenauswertung der A + B Impulse vornimmt.

_				
A/Ā		Bestell-Information		
		PKS09; Gerätestecker M23, 12-poli	g	
${\rm B}/\overline{\rm B}$		Тур	Bestell-Nr.	Beschreibung
		PKS09-ATBM0220	1 035 242	TTL 4,5 5,5 V; Messlänge 2 m
$\mathbf{Z}/\mathbf{\bar{Z}}$	Nullimpulsbreite 90°	PKS09-ATBM0520	1 035 243	TTL 4,5 5,5 V; Messlänge 5 m

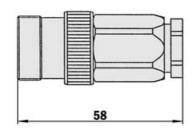
Rund-Schraubsystem M23, 12-polig für Seilzugencoder BKS mit SSI-Schnittstelle

Leitungsdose M23, 12-polig, gerade

Kontakte Bestell-Nr. 6 027 538


Leitungsstecker M23, 12-polig, gerade

Тур Bestell-Nr. Kontakte STE-2312-G 6 027 537



Тур

DOS-2312-G

$\textbf{Leitungsdose M23, 12-polig, gerade, Leitung 12-adrig, 4 x 2 x 0, 25 + 2 x 0, 5 + 2 x 0, 14 \text{ mm}^2 \text{ mit Abschirmung, schlepptauglich, } \\$

Leitungsdurchmesser 7,8 mm für Seilzugencoder BKS mit SSI-Schnittstelle

Тур	Bestell-Nr.	Kontakte	Leitungslänge
DOL-2312-G1M5MA1	2 029 200	12	1,5 m
DOL-2312-G03MMA1	2 029 201	12	3,0 m
DOL-2312-G05MMA1	2 029 202	12	5,0 m
DOL-2312-G10MMA1	2 029 203	12	10,0 m
DOL-2312-G20MMA1	2 029 204	12	20,0 m
DOL-2312-G30MMA1	2 029 205	12	30,0 m

$\textbf{Leitungsdose M23, 12-polig, gerade, Leitung 11-adrig, 4 x 2 x 0, 25 + 2 x 0, 5 + 1 x 0, 14 mm^2, Leitungsdurchmesser 7,8 mm}$

für Seilzugencoder BKS mit SSI-Schnittstelle

Тур	Bestell-Nr.	Kontakte	Leitungslänge
DOL-2312-G02MLA5	2 030 680	12	2,0 m
DOL-2312-G07MLA5	2 030 683	12	7,0 m
DOL-2312-G10MLA5	2 030 686	12	10,0 m
DOL-2312-G15MLA5	2 030 690	12	15,0 m
DOL-2312-G20MLA5	2 030 693	12	20,0 m
DOL-2312-G25MLA5	2 030 697	12	25,0 m
DOL-2312-G30MLA5	2 030 700	12	30,0 m

Leitung 8-adrig, Meterware, 4 x 2 x 0,15 mm² mit Abschirmung,

Leitungsdurchmesser 5,6 mm für Seilzugencoder BKS mit SSI-Schnittstelle

Bestell-Nr. Adern 6 027 529 LTG-2308-MW 8

Leitung 11-adrig, Meterware, $4 \times 2 \times 0.25 + 2 \times 0.5 + 1 \times 0.14 \text{ mm}^2$		
mit Abschirmung, Leitungsdurchmesser 7,5 mm		
für Seilzugencoder BKS mit SSI Schnittstelle		

Bestell-Nr. Adern Тур 6 027 530 LTG-2411-MW 11

$\textbf{Leitung 12-adrig, Meterware, 4 x 2 x 0, 25 + 2 x 0, 5 + 2 x 0, 5 + 2 x 0, 14 mm^2 mit Abschirmung, schlepptauglich, Leitungsdurchmesser 7,8 mm^2 mit Abschirmung, schlepptauglich, schlepptauglich,$

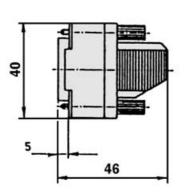
tur Seitzugencoder BKS mit SSI-Schnittstelle			
Тур	Bestell-Nr.	Adern	Beschreibung
LTG-2512-MW	6 027 531	12	
LTG-2612-MW	6 028 516	12	UV- und salzwasserbeständig

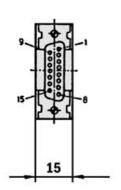
Adaptermodule für Seilzugencoder BKS mit SSI-Schnittstelle

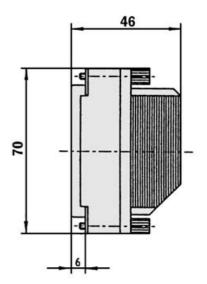
Seriell-Parallel-Adapter Тур Bestell-Nr. Beschreibung AD-SSIG-PA 1 030 106 SSI-Parallel-Adaptermodul, im Kunststoffgehäuse AD-SSI-PA 1 030 107 SSI-Parallel-Adaptermodul, ohne Kunststoffgehäuse AD-SSIPG-PA 1 030 108 SSI-Parallel-Adaptermodul, programmierbar, im Kunststoffgehäuse SSI-Parallel-Adaptermodul, programmierbar, ohne Kunststoffgehäuse, mit $\overline{\mbox{Frontplatte}}$ AD-SSIPF-PA 1 030 109 AD-SSIP-PA 1 030 110 SSI-Parallel-Adaptermodul, programmierbar, ohne Kunststoffgehäuse, ohne Frontplatte

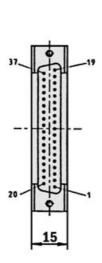
Programming Tool für programmierbare Seriell-Parallel-Adapter

Тур	Bestell-Nr.
PGT-02-S	1 030 112


Stecksystem Sub-D für Seriell-Parallel-Adapter


Leitungsstecker S	lub-D, 15-polig, ger	ade, abgeschirmt
Tyn	Restell-Nr	Kontakto


Тур	Bestell-Nr.	Kontakte
STE-0D15-G	2 029 223	15

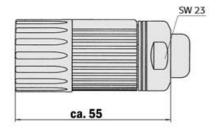

Leitungsdose Sub-D,	37-polig, gerade.	abgeschirmt
	o. p	8

Тур	Bestell-Nr.	Kontakte
DOS-0D37-G	2 029 224	37

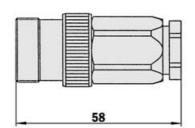
Allgemeintoleranzen nach DIN ISO 2768-mk

Allgemeintoleranzen nach DIN ISO 2768-mk

Rund-Schraubsystem M23, 12-polig für Seilzugencoder PKS mit TTL-Schnittstelle


Leitungsdose M23, 12-polig, gerade

Leitungsstecker M23, 12-polig, gerade


Тур	Bestell-Nr.	Kontakte
D0S-2312-G	6 027 538	12

Тур	Bestell-Nr.	Kontakte	
STE-2312-G	6 027 537	12	

Leitungsdose M23, 12-polig, gerade, Leitung 12-adrig, 4 x 2 x 0,25 + 2 x 0,5 + 2 x 0,14 mm² mit Abschirmung, schlepptauglich,

Leitungsdurchmesser 7,8 mm für Seilzugencoder PKS mit TTL-Schnittstelle

Тур	Bestell-Nr.	Kontakte	Leitungslänge
DOL-2312-G1M5MA3	2 029 212	12	1,5 m
DOL-2312-G03MMA3	2 029 213	12	3,0 m
DOL-2312-G05MMA3	2 029 214	12	5,0 m
DOL-2312-G10MMA3	2 029 215	12	10,0 m
DOL-2312-G20MMA3	2 029 216	12	20,0 m
DOL-2312-G30MMA3	2 029 217	12	30,0 m

Leitungsdose M23, 12-polig, gerade, Leitung 11-adrig, $4 \times 2 \times 0.25 + 2 \times 0.5 + 1 \times 0.14$ mm², Leitungsdurchmesser 7,8 mm für Seilzugencoder PKS mit TTL-Schnittstelle

Тур	Bestell-Nr.	Kontakte	Leitungslänge	
DOL-2312-G02MLA3	2 030 682	12	2,0 m	
DOL-2312-G07MLA3	2 030 685	12	7,0 m	
DOL-2312-G10MLA3	2 030 688	12	10,0 m	
DOL-2312-G15MLA3	2 030 692	12	15,0 m	
DOL-2312-G20MLA3	2 030 695	12	20,0 m	
DOL-2312-G25MLA3	2 030 699	12	25,0 m	
DOL-2312-G30MLA3	2 030 702	12	30,0 m	

Leitung 8-adrig, Meterware, 4 x 2 x 0,15 mm ² mit Abschirmung,				
Leitungsdurchmesser 5,6 mm				
für Seilzugencoder PKS mit TTL-Schnittstelle				
	Destall No.	Т	A .1	1

Leitung 11-adrig, Meterware, $4 \times 2 \times 0,25 + 2 \times 0,5 + 1 \times 0,14$ mm ²		
mit Abschirmung, Leitungsdurchmesser 7,5 mm		
für Seilzugencoder PKS mit TTL-Schnittstelle		

Тур	Bestell-Nr.	Adern	
LTG-2308-MW	6 027 529	8	

Тур	Bestell-Nr.	Adern
LTG-2411-MW	6 027 530	11

Leitung 12-adrig, Meterware, 4 x 2 x 0,25 + 2 x 0,5 + 2 x 0,14 mm² mit Abschirmung, schlepptauglich, Leitungsdurchmesser 7,8 mm

für Seilzugencoder PKS mit 11L-Schnittsteile			
Тур	Bestell-Nr.	Adern Beschreibung	
LTG-2512-MW	6 027 531	12	
LTG-2612-MW	6 028 516	12	UV- und salzwasserbeständig