36035 Fulda, Germany +49661 6003-0 +49661 6003-607 mail@jumo.net www.jumo.net

Coatesville PA 19320 US
Phone: 610-380-8002

Jumo dTRANS Lf 01
 μ P Transmitter / Controller for electrolytic conductivity

Type 202540

Brief description

This instrument measures and controls the conductivity of aqueous solutions.
The transmitter has two analog and two logic inputs. The first analog input is suitable for the connection of conductivity electrodes with cell constants of $0.01,0.1,1.0,3.0$ or 10.0 [1/cm]. The second analog input can be used to connect Pt100 or Pt1000 resistance thermometers.
The instrument features two 4-digit 7-segment displays for indicating the conductivity process value (red) and the temperature (green). During programming, the displays provide comments on the inputs.
A great variety of control tasks can be handled by the various output options (relay contacts and / or analog outputs). The two relay "make" contacts that are provided on the instrument as standard can be configured as a limit controller and / or pulse width or pulse frequency controllers, or as a modulating controller. To obtain analog (continuous) controller outputs, the optional analog outputs must be configured accordingly.
All controller outputs can be configured for a P, PI, PD or PID control action.
In the entry level version, the instrument provides two relay "make" contacts and one logic output $(0 / 5 \mathrm{~V})$. Two additional outputs can, according to choice, be fitted as relay changeover contacts and / or analog outputs (process value output or analog controller output) or as a serial interface (Profibus-DP or Modbus / Jbus protocol).

Block structure

2 analog outputs
Input 1:
Conductivity
conductivity measurement cells (2-electrode system)

Input 2:
Temperature
manual entry or
Pt100 / Pt1000

2 logic inputs

for floating contacts

Functions:

- key inhibit
range expansion (x10)
alarm stop
setpoint switching
- hold
- resetalarm time

Supply voltage

$110-240 \mathrm{~V}$ $48-63 \mathrm{~Hz}$ $20-53 \mathrm{VACID}$

 $48-63 \mathrm{~Hz}$$20-53 \mathrm{~V}$
extra codes / option

Type 202540 / ...

Type 202540 / .../640

Key features

- Panel-mounting instrument, just $96 \times 48 \times 110 \mathrm{~mm}$
- Conductivity display (in $\mu \mathrm{S} / \mathrm{cm}$ or $\mathrm{mS} / \mathrm{cm}$) and temperature
- 2 relays as standard, freely programmable as limit controller or P, PI, PID, PD controller with pulse width/pulse frequency output or modulating controller
- 2 electrically isolated analog outputs $0(4)$ $20 \mathrm{~mA} / 0(2)-10 \mathrm{~V}$ freely selectable and scalable for conductivity or temperature (option)
- 2 logic inputs
- Monitoring the temperature of the medium is possible
- Calibration procedure for the relative cell constant and temperature coefficient of solution being measured
- OPTION: Profibus-DP or serial interface RS485/422 with Modbus/Jbus protocol
- Measurement ranges from $0-0.5 \mu \mathrm{~S}$ to $0-200 \mathrm{mS}$ in one instrument

Approvals

Operation

For easy programming and operation, the controller parameter and configuration data are assigned to various levels.

Code words protect the levels from unauthorized access.
Membrane keys ensure simple and userfriendly operation.
The two LED displays show the parameter symbols and the corresponding values.

Operating level

The lower display, for example, shows the symbol, the upper display shows the corresponding value. Setpoints SPr1 and SPr2 can be altered by using the membrane keys.

$$
\frac{550}{59 r i}
$$

Parameter level

The controller is adapted to the control loop at this level. The appropriate parameters appear here, with symbol and value.
Only those parameters will be indicated which correspond to the configuration of the controller (configuration level).

Configuration level

This level is used to adapt the controller to the control task, or for adaptation of the inputs and outputs.

Indications / controls

Calibration options

- Calibration of the cell constant

Subject to manufacturing tolerances, the cell constant of the conductivity measuring cell may deviate slightly from its nominal (printed) value. In addition, the cell constant may change during operation (due to deposits or wear). This results in a change of the output signal from the cell. The dTRANS Lf 01 offers the user the possibility of compensating any deviation from the nominal value of the cell constant through manual entry (range 80 120%) or automatic calibration of the relative cell constant $\mathrm{K}_{\text {rel }}$.

- Calibration of the temperature coefficient α

The conductivity of almost all solutions is temperature-dependent. To ensure correct measurement, it is therefore necessary to know both the temperature and temperature coefficient α [\% per ${ }^{\circ} \mathrm{C}$] of the measuring solution. The temperature can either be measured automatically, with a Pt100 or Pt1000 temperature probe, or set manually by the user.
When using a dTRANS Lf 01, the temperature coefficient can be determined automatically or entered manually, within the range $0-5.5$ $\%$ per ${ }^{\circ} \mathrm{C}$.

Additional functions of the JUMO dTRANS Lf 01

- Programmable response of the process value output to underrange / overrange On underrange or overrange, the process value output can move to the following

operational states:

$-4 \%, 0 \%, 100 \%$ or 110% freely selectable Example: The instrument is programmed to
4-20 mA corresponding to
$0-30 \mathrm{mS} / \mathrm{cm}$
The instrument can be set up so that, on exceeding $30 \mathrm{mS} / \mathrm{cm}$, the output signal is either held at 20 mA (100\%) or will jump to 22 mA (110\%). The 22 mA value can then be recognized as "irregular" by a connected PLC.

\square Bilinear output

This function divides the signal for the analog process value output into two linear portions ($0-50 \%$ and $50-100 \%$ of the output signal), with a knee-point at 50% of the output signal. The knee-point of the characteristic can be shifted along the dotted 50% line. The 50% factory setting produces a straight-line characteristic.

The bilinear characteristic is used when the "normal" measurement range is likely to be frequently exceeded.

Example: The normal measurement range spans $0-20 \mu \mathrm{~S} / \mathrm{cm}$.
However, measurements of up to $80 \mu \mathrm{~S} / \mathrm{cm}$ can also occur.
In this case, the range $0-100 \mu \mathrm{~S} / \mathrm{cm}$ will be selected, and the knee-point set at 20% of this range (20% of $100 \mu \mathrm{~S} / \mathrm{cm}$ corresponds to $20 \mu \mathrm{~S} / \mathrm{cm})$.
This results in measurements in the range $0-$ $20 \mu \mathrm{~S} / \mathrm{cm}$ being converted into an output signal 0-10 mA.
Measurements in the range $20-100 \mu \mathrm{~S} / \mathrm{cm}$ will be converted into an output signal $10-$ 20 mA .

- The response of the controller relays to "Hold" can be defined
"Hold" is initiated either manually, using the keys, by a logic input, or by an alarm event. The outputs of the relays K1 and K2 can move to the following (programmable) states on "Hold":

0\%	Relay de-energized
50% output	For dynamic controllers, 50% of the maximum pulse width or frequency is produced
OUT output	Relay is energized, or maximum pulse width / frequency
Output acceptedThe present output continues to be produced	

I In "Manual" mode, the relays K1 and K2 are operated manually, by using the
keys. Either key or switch operation can be selected, by a setting at the parameter level.

Key operation: The relay is switched as long as the key is pressed (e.g. for manual dosing).
Switch operation: The first key stroke switches the relay on - the second switches it off again (toggle action), e.g. for emptying large tanks.

- Simulation of the process value output

In the manual mode, the process value output $(0 / 2-10 \mathrm{~V}$ or $0 / 4-20 \mathrm{~mA}$, depending on the setting) can be switched in 10% steps from $0-100 \%$,
Application: "Dry-run" commissioning of the plant (without measuring cell, fault search, servicing).

- Controller output functions

Output 1 (relay): Switching, with pulse frequency or pulse width action / limit monitoring / switched off. Switching function can be reversed.
MAX / MIN limit comparator.
Output 2 (relay): Switching, with pulse frequency or pulse width action / limit monitoring / MAX / MIN limit comparator for temperature / switched off. Switching function can be reversed.
MAX / MIN limit comparator.

Output 3, relay or analog process value output: "Hold" / alarm pulse contact; alarm steady contact / MAX/MIN comparator for temperature input / output of conductivity process value (only for analog process value output) / output of temperature process value (only for analog process value output) / analog controller output (only for analog process value output) / no function.
Output 4, logic output: "Hold" / alarm pulse contact / alarm steady contact / MAX limit comparator for temperature input / MIN limit comparator for temperature input / no function.

Output 5, relay or analog process value output: "Hold" / alarm pulse contact; alarm steady contact / MAX / MIN limit comparator / output of conductivity process value (only for analog process value output) / output of temperature process value (only for analog process value output) / analog controller output (only for analog process value output) / no function.

Limit comparator
 (limit monitor)

Controller outputs 1 to 5 (depending on the instrument version) can be assigned to a limitmonitoring function.
For each one, the direction of switching (pulled in on going above, or going below a limit), pull-in and/or drop-out delay, and a hysteresis can all be defined.

Interface

The microprocessor/controller can be optionally fitted with an RS422/RS485 interface. This is used for communication with higher-level systems and integration into a data network. The transmission protocol can be either Profibus-DP or Modbus/Jbus.

Technical data

Inputs

Analog input 1

Electrolytic conductivity cell, with cell
constants: $0.01,0.1,1.0,3.0,10.0$ [1/cm] (2electrode principle).
The cell constants can be adjusted over a range $80-120 \%$.
Lead compensation, input 1
The influence of long cables in the measuring ranges above $20 \mathrm{mS} / \mathrm{cm}$ can be compensated by entering the lead resistance, in the range 0.00 to 9.99Ω.

Analog input 2

Resistance thermometer Pt100 or Pt 1000, in 2- or 3-wire circuit -50 to $+250^{\circ} \mathrm{C}$
Measurement display in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
Lead compensation, analog input 2
The lead resistance can be compensated in software by a correction of the process value.

This is not required if the resistance thermometer is connected in a 3-wire circuit. When a resistance thermometer is connected in a 2-wire circuit, lead compensation can be provided by using an external compensation resistor.

Functional description of logic inputs 1

and 2
The two standard logic inputs can be operated by floating contacts (relays) from a PLC, or by switches. The following functions can be selected and assigned:

Key inhibit: The PLC or a key switch can be used to lock the keys on the transmitter, to prevent unauthorized entries being made.

Setpoint changeover: For comfortable process control. As long as the logic input is not operated, setpoint pair SPr1 and SPr2 is active. If the appropriately configured logic input is operated, then the second setpoint pair is activated (setpoint switching).

Freeze measurement: The indicated measurement and the process value output no longer change.
"Hold": This function can be used (for instance, by a supervisory PLC) to put the instrument into the secure "Hold" state. The response of the controller to "Hold" is as previously defined.
"Hold reversed": The same function as for HOLD, but when the logic input is open.
Alarm stop: The alarm generation via the configured output is reset or prevented, but the alarm LED (e.g. K4) continues to blink as a warning.
Reset alarm time: The alarm generation via the configured output is prevented. The alarm delay time is set to zero, but is restarted when the logic input becomes inactive and the start conditions are fulfilled once more. The alarm LED (e.g. K4) continues to blink as a warning.
Range expansion (x10): If only a small portion of the measurement range is used, it may be advantageous for the transmitter to react to 0 -10% of the process value by producing 0
-100% of the output signal.

Measurement and control range

$0-0.5 \mu \mathrm{~S}$ to $0-200 \mathrm{mS}$, depending on the cell constant, see table on page 5.
Deviation from characteristic
$\leq 1.0 \%$ of measurement range
Ambient temperature error
$\leq 0.25 \%$ per $10^{\circ} \mathrm{C}$

Reference temperature

$25^{\circ} \mathrm{C}$

Temperature display

-50 to $+250^{\circ} \mathrm{C}$ (can be switched to ${ }^{\circ} \mathrm{F}$)

Deviation from characteristic

$\leq 0.25 \%$ of measurement range

Ambient temperature error

$\leq 0.1 \%$ per $10^{\circ} \mathrm{C}$

Outputs

2 relay outputs, 1 logic output, 1 analog
process value output or 1 additional relay, and 1 serial interface are available.

1. Relay, output 1 / 2 (standard)

Make contact (n.o., can also be configured as n.c. break contact) contact rating: 3A, 250V AC with resistive load contact life:
$>5 \times 10^{5}$ operations at rated load
2. Logic output, output 4
$0 / 5 \mathrm{~V} \quad \mathrm{R}_{\text {load }} \geq 250 \Omega$ (standard)
or
$0 / 12 \mathrm{~V} \quad \mathrm{R}_{\text {load }} \geq 650 \Omega$ (option)
3. Process value output, output 3 or 5 (option)
freely configurable:
$0(2)-10 \mathrm{~V} \quad R_{\text {load }} \geq 500 \Omega$ or
0 (4) $-20 \mathrm{~mA} \quad R_{\text {load }} \geq 500 \Omega$ electrically isolated from the inputs:
$\Delta \mathrm{U} \leq 30 \mathrm{~V}$ AC or
$\Delta U \leq 50 V$ DC.
Deviation from characteristic of the output signal
$\leq 0.25 \% \pm 50 \mathrm{ppm}$ per ${ }^{\circ} \mathrm{C}$
4. Relay, output $\mathbf{3}$ or 5 (option)
(only for instruments without a process
value output)
changeover contact
contact rating: 3A, 250V AC
with resistive load
contact life:
$>5 \times 10^{5}$ operations at rated load
5. Interface RS422 / RS 485,

Output 5 (option)
electrically isolated

Baud rate

4800 / 9600 bps

Protocol

Modbus / Jbus or
Profibus-DP

General controller data

A/D converter

resolution >15 bit

Controller type

Outputs 1 and 2
limit controller and / or pulse width or pulse frequency controller, modulating controller. Freely configurable and mixable
K3 / K5:
continuous controller

Control action

configurable as P, PI, PID or PD.
Sampling time
210 msec

Measuring circuit monitoring

Input 1:
out-of-range, sensor monitoring
Input 2:
out-of-range, probe short-circuit,
probe break
The outputs move to a defined (configurable) status.

Data backup

EEPROM

Supply voltage

$110-240$ V AC $+10 \% /-15 \%$,
$48-63 \mathrm{~Hz}$ or
$20-53 \mathrm{VAC} / \mathrm{DC}, 48-63 / 0 \mathrm{~Hz}$,

Power consumption

approx. 8 V A
Electrical connection
Instrument for switchgear cabinet (basic version)
via gold-plated faston connectors to
DIN 46 244/A; $4.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$

Wall-mounting housing

(extra code /640)
via screw terminals
(wire cross-section up to $2.5 \mathrm{~mm}^{2}$)
6 cable glands ($1 \times \mathrm{M} 16,5 \times \mathrm{M} 20$

Permissible

ambient temperature
0 to $+50^{\circ} \mathrm{C}$
Permissible
ambient temperature limits
-10 to $+55^{\circ} \mathrm{C}$
Permissible storage temperature
-40 to $+70^{\circ} \mathrm{C}$
Climatic conditions
rel. humidity $\leq 75 \%$, no condensation
Enclosure protection
to EN 60529
Instrument for switchgear cabinet
front IP65 / rear IP20
Wall-mounting instrument
IP67

Electrical safety

to EN 61010
clearance and creepage distances for

- overvoltage category II
- pollution degree 2

Electromagnetic compatibility
to EN 61326
interference emission: Class B
interference immunity: to industrial requirements

Housing

Instrument for switchgear cabinet (basic version)
panel-mounting housing in conductive plastic
to DIN 43700 , base material ABS
with plug-in controller module.
Wall-mounting housing
(extra code /640)
base material PC
Operating position
unrestricted

Weight

Instrument for switchgear cabinet
(basic version)
approx. 320g
Wall-mounting housing (extra code /640)
approx. 1400 g

Option

Wall-mounting housing

extra code /640
On request, the JUMO dTRANS Lf 01 can be supplied built into a surface-mounting housing. The housing is suitable for wall-mounting or for mounting on a $35 \times 7.5 \mathrm{~mm}$ DIN rail to EN 50022.

The housing is sturdy and provides IP67 pro-
tection for the built-in instrument and is fitted with six cable glands. Unused cable glands can be tightly sealed using the blind grommets that are included in the delivery.
The electrical connection is made via screw terminals (wire cross-section up to $2.5 \mathrm{~mm}^{2}$).

Standard accessories

- 2 mounting brackets (not with extra code / 640 (wall-mounting housing))
- 1 seal for panel-mounting (not with extra code /640 (wall-mounting housing))
- sundry items for wall-mounting (only with extra code /640 (wall-mounting housing))
- sundry items for DIN rail mounting (only with extra code /640 (wall-mounting housing))
- 1 Operating Manual B 20.2540.0.1

Optional accessory
Interface Description B 20.2530.2

Cell constants and measurement ranges

Cell constant$K^{B)}$	Meas. range ${ }^{\text {B }}$			Display with configured measurement (C111)		Range (rAng)
				$\mu \mathrm{S}$	mS	
0.01	0 -	0.500	$\mu \mathrm{S} / \mathrm{cm}$	0.500	- - ${ }^{\text {a }}$	1
0.01	$0-$	2.000	$\mu \mathrm{S} / \mathrm{cm}$	2.000	- - ${ }^{\text {A) }}$	2
0.01	0 -	10.00	$\mu \mathrm{S} / \mathrm{cm}$	10.00	- - ${ }^{\text {A }}$	3
0.1	0 -	5.000	$\mu \mathrm{S} / \mathrm{cm}$	5.000	- - ${ }^{\text {A }}$	4
0.1	$0-$	20.00	$\mu \mathrm{S} / \mathrm{cm}$	20.00	--A)	5
0.1	0 -	100.0	$\mu \mathrm{S} / \mathrm{cm}$	100.0	- - ${ }^{\text {A) }}$	6
0.1	0 -	1.000	$\mathrm{mS} / \mathrm{cm}$	1000	1.000	7
0.1	0 -	5.000	$\mathrm{mS} / \mathrm{cm}$	5000	5.000	8
1.0	$0-$	50.00	$\mu \mathrm{S} / \mathrm{cm}$	50.00	- - ${ }^{\text {A }}$	9
1.0	0 -	100.0	$\mu \mathrm{S} / \mathrm{cm}$	100.0	- - ${ }^{\text {A }}$	10
1.0	0 -	1.000	$\mathrm{mS} / \mathrm{cm}$	1000	1.000	11
1.0	$0-$	5.000	$\mathrm{mS} / \mathrm{cm}$	5000	5.000	12
1.0	$0-$	20.00	$\mathrm{mS} / \mathrm{cm}$	- - ${ }^{\text {A }}$	20.00	13
1.0	0 -	100.0	$\mathrm{mS} / \mathrm{cm}$	--A)	100.0	14
3.0	0 -	1.000	$\mathrm{mS} / \mathrm{cm}$	1000	1.000	15
3.0	0 -	5.000	$\mathrm{mS} / \mathrm{cm}$	5000	5.000	16
3.0	0 -	30.00	$\mathrm{mS} / \mathrm{cm}$	- - ${ }^{\text {A }}$	30.00	17
10.0	$0-$	30.00	$\mathrm{mS} / \mathrm{cm}$	-- ${ }^{\text {A }}$	30.00	18
10.0	0 -	200.0	$\mathrm{mS} / \mathrm{cm}$	--A)	200.0	19

A) These settings are not permissible - they would cause an incorrect display
${ }^{B}$) The selection of the measurement range and cell constant is made through the code number "Range"

Parameters

Parameter	Display	Value range	Comment
Alarm tolerance	AL1	0.000-9999*	The alarm is only generated when the level (setpoint + alarm tolerance) has been passed, and the alarm delay time has elapsed
Alarm delay	AL2	0-6000 sec	Delay time before the alarm contact is activated
Proportional band 1	Pb1		
Proportional band 2	Pb2		Irfuences the P action of the controller
Derivative time 1	dt1	0-9999 sec	Influences the D action of the controller If $\mathrm{dt}=0$, the controller has no D action.
Derivative time 2	dt2		
Reset time 1	rt1		Influences the I action of the controller
Reset time 2	rt2		If $\mathrm{rt}=0$, the controller has nol action.
Minimum ON time 1 (for limit controller or pulse width controller) or minimum pulse width 1 (for pulse frequency controller)	tr1		Determined by the technical data of the dosing
Minimum ON time 2 (for limit controller or pulse width controller) or minimum pulse width 2 (for pulse frequency controller)	tr2		device (solenoid valve, dosing pump)
Switching differential 1	HYS1	1 - 9999*	Defines the switch-off point for the control contacts
Switching differential 2	HYS2		
Switching differential 3	HYS3		
Switching differential 4	HYS4		
Switching differential 5	HYS5		

Parameter	Display	Value range	Comment
Pull-in delay 1	Ond1	0.0-999.9 sec	Delay time before the contact is activated
Pull-in delay 2	Ond2		
Pull-in delay 3	Ond3		
Pull-in delay 4	Ond4		
Pull-in delay 5	Ond5		
Drop-out delay 1	Ofd1	0.2-999.9 sec	Delay time until the contact moves back to the initial position
Drop-out delay 2	Ofd2		
Drop-out delay 3	Ofd3		
Drop-out delay 4	Ofd4		
Drop-out delay 5	Ofd5		
Pulse frequency 1	Fr1	0-150 pulses/min	Maximum frequency of pulses (operating a dosing pump, for instance)
Pulse frequency 2	Fr2		
Pulse period 1	Cy1	$2.0-999.9 \mathrm{sec}$	The period in which a pulse is modulated
Pulse period 2	Cy2		
Output level limit, output 1	Y1	0-100\%	The maximum output level for a pulse width / pulse frequency controller
Output level limit, output 2	Y2		
Actuator time	tt	$15-3000 \mathrm{sec}$	For modulating controller

* Decimal point and dimensional unit corresponding to chosen range

Connection diagram

Logic output 1 (K4) Status indication LED K4	4	$\begin{aligned} & \hline 19 \\ & 17 \end{aligned}$	+	$\left.\overbrace{1}^{17} \square\right\|^{19}$
Relay 4 (K5) No status indication	5	3 2 1	break common make	
or analog process value output (electrically isolated)		1		$\begin{array}{cc} 14 & 15 \\ i & 0 \end{array}$

Meas. inputs	Connections	Symbol
Conductivity cell	6 Outer electrode, on coaxial cells 7 Inner electrode, on coaxial cells	
Resistance thermometer in 3-wire circuit	$\begin{aligned} & \hline 9 \\ & 10 \\ & 11 \end{aligned}$	
Resistance thermometer in 2-wire circuit	$\begin{aligned} & \hline 9 \\ & 10 \\ & 11 \end{aligned}$	

Meas. inputs		Connections			Symbol
Serial interface RS422 (option)	RxD	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{RxD}+ \\ & \mathrm{RxD} \end{aligned}$	Receive data	$\begin{array}{lllll}5 & 4 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ & & & & \\ & & & \end{array}$
	TxD	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { TxD + } \\ & \text { TxD - } \end{aligned}$	Transmit data	
	GND	3	GND		
Serial interface RS485 (option)	$+$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { TxD/RxD + } \\ & \text { TxD/RxD - } \end{aligned}$	Receive data / transmit data	$\begin{array}{lll} 2 & 1 & 3 \\ 0 & 0 & 0 \\ & & \\ & & \end{array}$
	GND	3	GND		
Serial interface Profibus-DP (option)	VP	4 supply voltage positive, (P5V) 2 receive/transmit data positive, B conductor			$\begin{array}{llll} 2 & 1 & 3 & 4 \\ 0 & 0 & 0 \\ & & & \\ & & & 0 \end{array}$
	RxD/TxD-P				
	RxD/TxD-N	1	receive/transm A conductor	ata negative,	
	GND	3	GND		
Logic input 1		$\begin{aligned} & 13 \\ & 19 \end{aligned}$			$\begin{array}{rr}13 & 19 \\ 0 & 9\end{array}$
Logic input 2		$\begin{aligned} & 12 \\ & 19 \end{aligned}$			$4_{0}^{12} 9^{19}$
Supply voltage see nameplate	$\begin{aligned} & \mathrm{AC} / \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { AC: } \\ & \text { L1 } \\ & \mathrm{N} \\ & \mathrm{TE} \end{aligned}$	phase/line neutral technical earth	$\begin{aligned} & \mathrm{DC}: \\ & \mathrm{L}+ \\ & \mathrm{L} \text { - } \end{aligned}$	

Connection for conductivity cell

	Conductivity cell (JUMO types)		dTRANS Lf 01
	Cap	Fixed cable	
Outer electrode		white	
Inner electrode			
Temperature			brown
compensation	2	yellow	
Link	1	green	7
	3		11

Dimensions

Type 202540 / ..

Panel cut-out to DIN 43700
close mounting (minimum dimensions)

Option

Surface-mounting housing, extra code /640, IP67 protection

Type designation

(1) Basic type

202540
(2) Basic type extensions
(5) Supply voltage
$20-53 \mathrm{~V} \mathrm{AC/DC}, 48-63 / 0 \mathrm{~Hz}$
$110-240$ V AC $+10 \% /-15 \%, 48-63 \mathrm{~Hz}$
(6) Interface
no serial interface
serial interface RS422/485 ${ }^{1}$
serial interface Profibus-DP ${ }^{1}$
(7) Extra codes
no extra codes
015 logic output 0/12 V DC, instead of standard 0/5 V DC
640 surface-mounting housing for mounting on wall or DIN rail, IP67 protection

*Generally

on all controllers of the 202540 series, the user can freely select the following
configurations:

- Controller off
- Limit controller
- Pulse width controller with P, PI, PD, PID control action
\square Pulse frequency controller with P, PI, PD, PID control action
- Modulating controller

1 If output II (4) = "310" or "888" then the interface option (6) is not possible (or the other way round)!

Stock items

Type

202540/10-888,000-23-00/000
202540/10-888,000-23-00/640
Sales
20/00377231
20/00431436

Non stock items

Type
Sales No.
202540/10-888,000-22-00/000
20/00401180

Optional accessories 1 (switchgear cabinet instrument)

Designation

Bracket for C-rail
Blind cover $96 \times 48 \mathrm{~mm}$

Optional accessories 2 (wall-mounting instrument)

Designation

Pole clamp, 60 mm dia. (clamping area: $50-70 \mathrm{~mm}$ dia.)
Pole clamp, 120 mm dia. (clamping area: 100 - 120 mm dia.)

Sales No.
20/00437485
20/00437486

