Postal address:
Phone:
Fax:
E-mail:
Internet:

36035 Fulda, Germany +49 661 6003-0 +49661 6003-607 mail@jumo.net www.jumo.net

JUMO PROCESS CONTROL INC.
885 Fox Chase, Suite 103
Coatesville PA 19320, USA
Phone: 610-380-8002

Jumo dTRANS Rd 01 $\mu \mathrm{P}$ Transmitter / Controller for redox potential (ORP)

Type 202535

Brief description

The instrument measures and controls the redox potential of aqueous solutions.
The transmitter has two analog and two logic inputs. The first analog input is suitable for connecting a redox combination electrode or a metal/reference electrode. The second analog input can be used to connect Pt100 or Pt1000 resistance thermometers.
The instrument features two 4-digit 7-segment displays for indicating the temperatureindependent redox-potential process value (red) and the temperature (green). The instrument is delivered as standard with the temperature display switched off. A separate temperature sensor (Pt100 or Pt1000) can be attached to the second analog input, and used to indicate the temperature of the medium being measured and to monitor it through a limit comparator (limt switch), if required. During programming, the displays provide comments on the inputs.
A great variety of control tasks can be handled by the various output options (relay contacts and/or analog outputs). The two relay "make" contacts that are provided on the instrument as standard can be configured as a limit controller and/or pulse width or pulse frequency controllers, or as a modulating controller. To obtain analog (continuous) controller outputs, the optional analog outputs must be configured accordingly.
All controller outputs can be configured for a P, PI, PD or PID control action.
In the entry level version, the instrument provides two relay "make" contacts and one logic output $(0 / 5 \mathrm{~V})$. Two additional outputs can, according to choice, be fitted as relay changeover contacts and/or analog outputs (process value output or analog controller output) or as a serial interface (Profibus-DP or Modbus/Jbus protocol).

Block structure

2 analog inputs

Input 1:
Redox potential
Input 2:
Temperature
manual entry or
Pt100 / Pt1000

2 logic inputs

for floating contacts
Functions:
- key inhibit
- range expansion $(x 10)$
- freeze measurement
- alarm stop
- setpoint switching
- hold
- reset alarm time

Supply voltage

$110-240 \mathrm{~V} \mathrm{AC}+10 \% /-15 \%$
$48-63 \mathrm{~Hz}$
$20-53 \mathrm{~V} \mathrm{AC/DC} 48-63 \mathrm{~Hz}$

Type 202535 / ...

Type 202535 / .../640

Key features

- Panel-mounting instrument, just $96 \times 48 \times 110 \mathrm{~mm}$
- Display in mV
- 2 relays as standard, freely programmable as limit controller or P, PI, PID, PD controller with pulse width/pulse frequency output or modulating controller
- 2 electrically isolated analog outputs $0(4)-20 \mathrm{~mA} / 0(2)-10 \mathrm{~V}$ freely selectable and scalable for redox
- 2 logic inputs
- Monitoring and displaying temperature of medium is possible
- Simple, step-by-step calibration procedure
- OPTION: Profibus-DP or serial interface RS485 / 422 with Modbus/Jbus protocol
- Surface-mounting housing to DIN 43 700, front protection IP65.
- Wall-mounting housing protected to IP67

Approvals

Operation

For easy programming and operation, the controller parameter and configuration data are assigned to various levels.

Code words protect the levels from unauthorized access.
Membrane keys ensure simple and userfriendly operation.
The two LED displays show the parameter symbols and the corresponding values.

Operating level

The lower display, for example, shows the symbol, the upper display shows the corresponding value. Setpoints SPr1 and SPr2 can be altered by using the membrane keys.

Parameter level
The controller is adapted to the control loop at this level. The appropriate parameters appear here, with symbol and value.
Only those parameters will be indicated which correspond to the configuration of the controller (configuration level).

Configuration level

This level is used to adapt the controller to the control task, or for adaptation of the inputs and outputs.

Indications / controls

Calibration options

The electrode zero point of a redox combination electrode is subject to manufacturing tolerances and variations depending on usage.
The transmitter offers the feature of using a step-by-step calibration procedure - the 1point calibration - to make a fresh determination of the zero point of the electrode by using a buffer solution or a solution with a known redox potential.

The transmitter also offers the facility of manually entering or adjusting the zero point (as determined by a laboratory, for example).

Additional functions of the JUMO dTRANS Rd 01

- Programmable response of the process value output to underrange/overrange
On underrange or overrange, the process value output can move to the following operational states:
$-4 \%, 0 \%, 100 \%$ or 110% freely selectable
Example: Instrument is programmed to
4-20 mA corresponding to $100-500 \mathrm{mV}$

The instrument can be set up so that, on falling below 100, the output signal is either held at $4 \mathrm{~mA}(0 \%)$ or drops to $3.84 \mathrm{~mA}(-$ $4 \%)$. The 3.84 mA value can then be recognized as "irregular" by a connected PLC.
. The response of the controller relays to "Hold" can be defined
"Hold" is initiated either manually, using the keys, by a logic input, or by an alarm event. The outputs of the relays K1 and K2 can move to the following (programmable) states on "Hold":

Relay de-energized
50% output
For dynamic controllers, 50% of the maximum pulse width or frequency is produced
100% output
Relay is energized, or maximum pulse width / frequency

Output accepted
The present output continues to be produced

I In "Manual" mode, the relays K1 and K2 are operated manually, by using the keys. Either key or switch operation can be selected, by a setting at the parameter level.
Key operation: The relay is switched as long as the key is pressed (e.g. for manual dosing).
Switch operation: The first key stroke switches the relay on - the second switches it off again (toggle action), e.g. for emptying large tanks.

- Simulation of the analog process value output

In the manual mode, the process value output $(0 / 2-10 \mathrm{~V}$ or $0 / 4-20 \mathrm{~mA}$, depending on the setting) can be switched in 10\% steps from $0-100 \%$.

Application: "Dry-run" commissioning of the plant (without electrodes), fault-finding, servicing.

- Controller output functions

Output 1 (relay): Switching, with pulse frequency or pulse width action / limit monitoring / switched off. Switching function can be reversed.
MAX / MIN limit comparator.
Output 2 (relay): Switching, with pulse frequency or pulse width action / limit monitoring / MAX/MIN limit comparator for temperature input / switched off. Switching function can be reversed. MAX/MIN limit comparator.

Output 3, relay or analog process value output: "Hold" / alarm pulse contact; alarm steady contact / MAX/MIN limit comparator / output of redox potential (only for analog process value output) / output of temperature process value (only for analog process value output) / analog controller output (only for analog process value output) / no function.

Output 4, logic output: "Hold" / alarm pulse contact / alarm steady contact / MAX/MIN limit comparator / no function.

Output 5, relay or analog process value output: "Hold" / alarm pulse contact; alarm steady contact / MAX/MIN limit comparator / output of redox potential (only for analog process value output) / output of temperature process value (only for analog process value output) / analog controller output (only for analog process value output) / no function.

Limit comparator (limit monitor)

Controller outputs 1 to 5 (depending on the instrument version) can be assigned to limitmonitoring functions.
For each one, the direction of switching (pulled in going above, or going below a limit), pull-in and/or drop-out delay, and a hysteresis can all be defined.

Interface

The $\mu \mathrm{P}$ transmitter/controller can be optionally fitted with an RS422/RS485 interface. This is used for communication with higher-level systems and integration into a data network. The transmission protocol can be either Profibus-DP or Modbus/Jbus.

Technical data

Inputs

Analog input 1

Input resistance $\geq 10^{12} \Omega$
Insulation resistance of the reference system connection to ground $>10^{7} \Omega$ according to
DIN 19265
For all the usual metal combination electrodes or metal/reference electrodes.

Analog input 2

Resistance thermometer Pt100 or
Pt 1000, in 2- or 3-wire circuit
-50 to $+250^{\circ} \mathrm{C}$
Measurement display in ${ }^{\circ} \mathrm{C}$ (option ${ }^{\circ} \mathrm{F}$)
Lead compensation, analog input 2
The lead resistance can be compensated in software by a correction of the process value. This is not required if the resistance thermometer is connected in a 3-wire circuit. When a resistance thermometer is connected in a 2-wire circuit, lead compensation can be provided by using an external compensation resistor.

Functional description of logic inputs 1

and 2
The two standard logic inputs can be operated by floating contacts (relays) from a PLC, or by switches. The following functions can be selected and assigned:

Key inhibit: The PLC or a key switch can be used to lock the keys on the transmitter, to prevent unauthorized entries being made.

Setpoint changeover: For comfortable process control. As long as the logic input is not operated, setpoint pair SPr1 and SPr2 is active. If the appropriately configured logic input is operated, then the second setpoint pair is activated.

Freeze measurement: The indicated measurement and the process value output no longer change.
"Hold": This function can be used (for instance, by a supervisory PLC) to put the instrument into the secure "Hold" state. The response of the controller to "Hold" is as previously defined.
"Hold reversed": The same function as HOLD, but when the logic input is open.

Alarm stop: The alarm generation via the configured output is prevented, but the alarm LED (e.g. K4) continues to blink as a warning.

Reset alarm time: The alarm generation via the configured output is prevented. The alarm delay time is set to zero, but is restarted when the logic input becomes inactive and the start conditions are fulfilled once more. The alarm LED (e.g. K4) continues to blink as a warning.

Range expansion (x10): If only a small portion of the measurement range is used, it may be advantageous for the transmitter to react to 0 -10% of the process value by producing 0 - 100\% of the output signal.

Measurement and control range

-1999 to +1999 mV

Deviation from characteristic

$\leq 0.25 \%$ per $10^{\circ} \mathrm{C}$

Ambient temperature error

$\leq 0.15 \%$ per $10^{\circ} \mathrm{C}$
Temperature display
-50 to $+250^{\circ} \mathrm{C}$ (option ${ }^{\circ} \mathrm{F}$)
Deviation from characteristic
$\leq 0.25 \%$ of measurement range

Ambient temperature error

$\leq 0.1 \%$ per $10^{\circ} \mathrm{C}$

Outputs

2 relay outputs, 1 logic output, 1 analog process value output or 1 additional relay, and 1 serial interface are available.

1. Relay, output 1 / 2 (standard)

Make contact (n.o., can also be configured as n.c. break contact)
contact rating: 3A, 250V AC
with resistive load
contact life:
$>5 \times 10^{5}$ operations at rated load
2. Logic output, output 4

$0 / 5 \mathrm{~V}$	$\mathrm{R}_{\text {load }} \geq 250 \Omega$
or	
$0 / 12 \mathrm{~V}$	$R_{\text {load }} \geq 650 \Omega$ (option)

3. Process value output, output 3 or 5 (option)
freely configurable:
$0(2)-10 \mathrm{~V} \quad \mathrm{R}_{\text {load }} \geq 500 \Omega$ or
$0(4)-20 \mathrm{~mA} \quad \mathrm{R}_{\text {load }} \geq 500 \Omega$
electrically isolated from the inputs:
$\Delta \mathrm{U} \leq 30 \mathrm{~V} \mathrm{AC}$ or
$\Delta U \leq 50 \mathrm{~V}$ DC
Deviation of output signal from
characteristic
$\leq 0.25 \%, \pm 50 \mathrm{ppm}$ per ${ }^{\circ} \mathrm{C}$
4. Relay, output 3 or 5 (option)
(only for instruments without a process
value output)
changeover contact
contact rating: 3A, 250V AC
with resistive load
contact life:
$>5 \times 10^{5}$ operations at rated load
5. Interface RS422 / RS485,

Output 5 (option)
electrically isolated
Baud rate
4800/9600bps

Protocol

Modbus / Jbus or
Profibus-DP

General controller data

A/D converter
resolution >15 bit

Controller type

Outputs 1 and 2
limit controller, pulse width or pulse frequency controller, modulating controller. Freely configurable and mixable
K3 / K5:
continuous controller

Control action

configurable as P, PI, PID or PD.

Sampling time

210 msec
Measurement circuit monitoring
Input 1: out-of-range
Input 2: out-of-range, probe short-circuit, probe break
The outputs move to a defined (configurable) status.

Data backup

EEPROM

Supply voltage

110 - 240 V AC +10\%/-15\%,
$48-63 \mathrm{~Hz}$
or
$20-53 \mathrm{~V}$ AC/DC, $48-63 / 0 \mathrm{~Hz}$,

Power consumption

approx. 8V A
Electrical connection
via gold-plated faston connectors to DIN 46 244/A; $4.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ redox combination electrode or metal electrode via BNC socket.

Wall-mounting housing
(extra code /640)
via screw terminals
(wire cross-section up to $2.5 \mathrm{~mm}^{2}$)
6 cable glands ($1 \times \mathrm{M} 16,5 \times \mathrm{M} 20$)

Permissible

ambient temperature
0 to $+50^{\circ} \mathrm{C}$

Permissible

ambient temperature limits
-10 to $+55^{\circ} \mathrm{C}$
Permissible storage temperature
-40 to $+70^{\circ} \mathrm{C}$
Climatic conditions
rel. humidity $\leq 75 \%$, no condensation

Enclosure protection

to EN 60529
Instrument for switchgear cabinet
fron IP65 / rear IP20
Wall-mounting instrument
IP67
Electrical safety
to EN 61010
clearance and creepage distances for

- overvoltage category II
- pollution degree 2

Electromagnetic compatibility
to EN 61326
interference emission:Class B
interference immunity:to industrial requirements

Housing

Instrument for switchgear cabinet

(basic version)
panel-mounting housing in conductive plastic
to DIN 43 700, base material ABS
with plug-in controller module.
Wall-mounting housing

(extra code /640)

base material PC
Operating position
unrestricted

Weight

Instrument for switchgear cabinet (basic
version)
approx. 320 g
Wall-mounting housing
(extra code /640)
approx. 1400 g

Standard accessories

- 2 mounting brackets
- 1 seal (housing/panel)
- 1 Operating Manual B 20.2535.0.1

Option

Wall-mounting housing
extra code /640
Housing with door at front
Type 2 FGE-150-2/185
On request, the JUMO dTRANS Rd 01 can also be supplied built into a surface-mounting housing. The housing is suitable for wallmounting or for mounting on a $35 \times 7.5 \mathrm{~mm}$ DIN rail to EN 50022.
The housing is sturdy and provides IP67 protection for the built-in instrument and is fitted with six cable glands. Unused cable glands can be tightly sealed using the blind grommets that are included in the delivery.
The electrical connection is made via screw terminals (wire cross-section up to $2.5 \mathrm{~mm}^{2}$).

Standard accessories

- 2 mounting brackets (not with extra code / 640 (wall-mounting housing))
- 1 BNC connector (not with extra code /640 (wall-mounting housing))
- 1 seal for panel mounting (not with extra code /640 (wall-mounting housing))
- sundry items for wall-mounting (only with extra code /640 (wall-mounting housing))
- sundry items for DIN rail mounting (only with extra code /640 (wall-mounting housing))
- 1 Operating Manual B 20.2535.0.1

Optional accessory
Interface Description B 20.2530.2

Parameters

Parameter	Display	Value range	Comment
Alarm tolerance	AL1	0000-9999 mV	The alarm is only generated when the level (setpoint + alarm tolerance) has been passed, and the alarm delay time has elapsed (only effective for pulse width / pulse frequency controllers. It is internally fixed at 0 for limit controllers).
Alarm delay	AL2	0-6000 sec	Delay time before the alarm contact is activated
Proportional band 1	Pb1	$1-9999 \mathrm{mV}$	Influences the P action of the controller
Proportional band 2	Pb2	$1-9999 \mathrm{mV}$	
Derivative time 1	dt1	0-9999 sec	Influences the D action of the controller If $\mathrm{dt}=0$, the controller has no D action.
Derivative time 2	dt 2		
Reset time 1	rt1		Influences the I action of the controller
Reset time 2	rt2		If $\mathrm{rt}=0$, the controller has no I action.
Minimum ON time 1 (for limit controller or pulse width controller) or minimum pulse width 1 (for pulse frequency controller)	tr1	$0.2-999.9 \mathrm{sec}$	Determined by the technical data of the dosing device (solenoid valve, dosing pump)
Minimum ON time 2 (for limit controller or pulse width controller) or minimum pulse width 2 (for pulse frequency controller)	tr2	0.2-999.9 sec	
Switching differential 1	HYS1	$1-9999 \mathrm{mV}$	Defines the switch-off point for the control contacts
Switching differential 2	HYS2		
Switching differential 3	HYS3		
Switching differential 4	HYS4		
Switching differential 5	HYS5		
Pull-in delay 1	Ond1	0.0-999.9 sec	Delay time before the contact is activated
Pull-in delay 2	Ond2		
Pull-in delay 3	Ond3		
Pull-in delay 4	Ond4		
Pull-in delay 5	Ond5		
Drop-out delay 1	Ofd1	0.2-999.9 sec	Delay time until the contact moves back to the initial position
Drop-out delay 2	Ofd2		
Drop-out delay 3	Ofd3		
Drop-out delay 4	Ofd4		
Drop-out delay 5	Ofd5		
Pulse frequency 1	Fr1	$0-150$ pulse/min	Maximum frequency of pulses (operating a dosing pump, for instance)
Pulse frequency 2	Fr2		
Pulse period 1	Cy1	$2.0-999.9 \mathrm{sec}$	The period in which a pulse is modulated
Pulse period 2	Cy2		
Output level limit, output 1	Y1	0-100\%	The maximum output level for a pulse width / pulse frequency controller
Output level limit, output 2	Y2	0-100\%	
Actuator time	tt	$15-3000 \mathrm{sec}$	For modulating controller

Connection diagram

Rear view with faston connectors

Wall-mounting housing (extra code /640) with terminal strip

Outputs	K	Terminal assignments	Symbol
Relay 1 (K1) Status indication LED K1	1	23 common 22 make	
Relay 2 (K2) Status indication LED K2	2	21 common 20 make	
Relay 3 (K3) Status indication LED K3	3	16 break 15 common 14 make	
or analog process value output (electrically isolated)		$\begin{array}{ll} 15 & - \\ 14 & + \end{array}$	$i^{14} \begin{gathered} 15 \\ 0 \end{gathered} \quad 4$
Logic output 1 (K4) Status indication LED K4	4	$\begin{array}{ll} 19 & - \\ 17 & + \end{array}$	$\left.\left.\right\|_{+} ^{17}{ }_{+}^{19}\right\|_{-} ^{19}$
Relay 4 (K5) no status indication	5	3 break 2 common 1 make	
or analog process value output (electrically isolated)		$\begin{array}{ll} 2 & - \\ 1 & + \end{array}$	$\begin{array}{ll} 1 & 2 \\ 0 & 0 \\ & \\ & \end{array}$

Inputs	Terminal assignments	Symbol
Redox combination electrode	with switchgear cabinet instrument: BNC socket with wall-mounting housing (extra code /640): screw terminal 6: reference system (braiding) screw terminal 7: metal electrode (inner conductor)	
Metal electrode with separate reference system	with switchgear cabinet instrument: BNC socket with wall-mounting housing (extra code /640): screw terminal 6: braiding screw terminal 7: metal electrode (inner conductor)	
Reference electrode	8 reference system (inner conductor)	
Resistance thermometer in 3-wire circuit	$\begin{aligned} & 9 \\ & 10 \\ & 11 \end{aligned}$	
Resistance thermometer in 2-wire circuit	$\begin{aligned} & 9 \\ & 10 \\ & 11 \end{aligned}$	

Dimensions

Type 202535/...

panel cut-out to DIN 43700

Option

Surface-mounting housing, extra code /640, Protection IP67

Type designation

(1) Basic type
(2) Basic type extensions

(7) Extra codes

no extra codes
015 logic output 0/12 V DC, instead of standard 0/5 V DC
640 surface-mounting housing for mounting on wall or DIN rail, IP67 protection

*Generally

on all controllers of the 202535 series, the user can freely select the following configurations:

- Controller off
- Limit controller
- Pulse width controller with P, PI, PD, PID control action
- Pulse frequency controller with P, PI, PD, PID control action
- Modulating controller

1 If output II (4) = "310" or "888" then the interface option (6) is not possible (or the other way round)!

Stock items

Type
202535/10-888,000-23-00/000

Sales No.

20/00377254

Sales No.

20/00448166

Optional accessories 1 (switchgear cabinet instrument)

Designation	Sales No.
Bracket for C-rail	$70 / 00375749$
Blind cover $96 \times 48 \mathrm{~mm}$	$70 / 00069680$

Optional accessories 2 (wall-mounting instrument)

Designation
Pole clamp, 60 mm dia. (clamping area: $50-70 \mathrm{~mm}$ dia.)
Pole clamp, 120 mm dia. (clamping area: $100-120 \mathrm{~mm}$ dia.)

Sales No.
20/00437485
20/00437486

