Via monte Nero, 40/B - 21049 TRADATE (VA) ITALY
Tel: +39 (0)331841070 Fax:+39 (0)331841950-e-mail:datexel@datexel.it - www.datexel.it

FEATURES

- Universal Analog Input
- Relay Outputs: 2 SPDT + 2 SPST (version with 4
thresholds)
- Relay Outputs: 2 SPDT (version with 2 thresholds)
- 1 V/mA Analog Output for signal transmission
- 1500 Vca galvanic isolation on all ways
- High Accuracy
- EMC compliance - CE Mark
- DIN rail suitable mounting (EN-50022)

GENERAL DESCRIPTION

The DAT 5028 device is able to acquire RTD or Tc sensors, mV, V or mA input signals connected to the universal analog input. By means of pushbutton and 4-digit display on the front panel, four different trip alarms are configurable. Each alarm threshold commands an output relay. Input signal can be retransmitted on the analog output in a Voltage or Current signal, configurable by means of dip-switch on the side of the device.
By means of an internal 16 bit converter, the device guarantee a high accuracy and a stable measure versus time and temperature.
The 1500 Vac isolation on all ways removes eventual ground-loop effects, allowing the use of the device even in the heavy environmental conditions. In function of the number of thresholds necessary to the user, the device can be supplied in two different versions:
DAT5028-4 with 4 thresholds (2 SPDT + 2 SPST);
DAT5028-2 con with 2 thresholds (2 SPDT).
DAT 5028 is in compliance with the Directive 2004/108/EC on the electromagnetic compatibility.
The device is housed in a rough self-extinguishing plastic container which, thanks to its thin profile of 22.5 mm only, allows a high density mounting on EN-50022 standard DIN rail.

USER INSTRUCTIONS

Before to install the device, please read the "Installation Instruction" section. Connect power supply, analog input, relay outputs and analog output as shown in the "Wiring" section.
In normal conditions, the display must always show a value.
To simplify handling or replacing of the device, it is possible to change configuration or remove the wired terminals even with the device powered.

TRIP OPERATION MODE

The relay goes on when the input signal is higher than the set-point level for at least the delay time "t on" (mS). The relay goes off only when the input signal is lower than the hysteresis value for at least delay time.

TECHNICAL SPECIFICATIONS (Typical @ $25^{\circ} \mathrm{C}$ and in the nominal conditions)

Analog Inputs

Type	Range	Accuracy	Linearity	Thernal Drift
100 mV	$-100 /+100 \mathrm{mV}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
10 V	$-10 /+10 \mathrm{~V}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
20 mA	$0 / 20 \mathrm{~mA}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pt100	$-200 /+850{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pt1K	$-200 /+200{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Ni100	$-60 /+180^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Ni1K	$-60 /+150{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Res	$0 / 2 \mathrm{Kohm}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pot	$0 / 100 \%$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc C	$-210 /+1200{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc K	$-210 /+1370{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc R	$-50 /+1760{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc S	$-50 /+1760{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc B	$+400 /+1825 \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc E	$-210 /+1000{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc T	$-210 /+400{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tc N	$-210 /+1300{ }^{\circ} \mathrm{C}$	$\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Lead wire res. influence	RTD (3 wires) mV, Tc	$0.05 \% / \Omega(50 \Omega \mathrm{max})$ $<0.8 \mathrm{uV} / \mathrm{Ohm}$
Excitation current		
RTD, Res, Pot	$\sim 0.7 \mathrm{~mA}$	
Pot. Nominal value		2 KOhm
Sample Time		1 sec.
Warm-up time		3 min.

Digital Outputs

n. 2 SPDT + n. 2 SPST Relays

Max Load (resistive)
Min Load
Max Voltage
Dielectric strength between contacts
Dielectric strength between coil and contacts
2 A @ 250 Vac (per contact)
2 A @ 30 Vdc (per contact)
5Vdc, 10mA
$250 \mathrm{Vac}(50 / 60 \mathrm{~Hz})$, 110Vdc
$1000 \mathrm{Vac}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
$4000 \mathrm{Vac}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.

Analog Output

Type	Range	Accuracy	Linearity	Thermal Drift
10 V	$0 /+10 \mathrm{~V}$	$\pm 0.1 \%$ f.s.	$\pm 0.05 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
20 mA	$0 /+20 \mathrm{~mA}$	$\pm 0.1 \%$ f.s.	$\pm 0.05 \%$ f.s.	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Load Resistance
< 500 Ohm (current output)
$>5 \mathrm{KOhm}$ (voltage output)
Auxiliary Voltage
$>12 \mathrm{~V}$

Power Supply

Supply Voltage
$12 \div 30 \mathrm{Vdc}$
Current consumption @ 24 Vdc 120 mA typ (200 mA max.)
Rev. Polarity protection

$$
60 \mathrm{Vdc} \max
$$

Isolations

Isolation voltage 1500 Vac (on all ways)
EMC (for industrial environments)

Immunity	EN $61000-6-2$
Emission	EN $61000-6-4$
Temperature \& Humidity	
Operative temperature	$-30^{\circ} \mathrm{C} . .+60^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C} . .+85^{\circ} \mathrm{C}$
Relative humidity (not cond.)	$0 . .90 \%$
Housing	
Material	Self-extinguishing plastic
Mounting	DIN rail EN-50022
Weight	about 150 g.

1）Set the input type by the dip－switch［1．．5］（see TAB．1）
2）Set the minimum input scale value（Zero）by the dip－switch［6．．9］（see TAB． 2^{*} ）
2）Set the maximum input value（Span）by the dip－switch［10．．14］（see TAB． 2 ＊）
4）Set the output type by the dip－switch［15．．16］（see TAB．3）
＊Refer to the proper input type range．Needed only if Analog Out retransmission is used．

TAB． 2 －Input Range

Range selection for Res．			Range selection for Tc，RTD			Range selection for 100 mV		
Zero	Span		Zero	Span		Zero	Span	
${ }^{\circ} \wedge^{\infty} 0^{\circ} \mathrm{C}$	$\bigcirc{ }^{\text {ㅇ№nmy }}$	－Ornmy	${ }^{\circ} \wedge^{\infty} 0^{\circ} \mathrm{C}$	우№nd ${ }^{\circ} \mathrm{C}$	아ํNㅔㄲ	¢ ${ }^{\circ} \mathrm{mog}$ mV	육№vip mV	O－NNM
IPIP Def．	Tilit Def．	TH17 170	17% Def．	Tipraf．	Ifly 170		TPIT Def．	Iffl 17
WHP0	W70］ 0	THP］ 180	W7P］－200	W9100 0	7180］ 180	64P］－20		Tfill 18
아ำ 10		TH190 190		T10 10	7670 190	ㄱㅐㅐㅐ－10	\％ 1	719
［日限 20	G6ith 20	B6TH 200	［日炜－80	－180］ 20	相 200		6相 2	－170］ 20
明 30		限昭 250	701－60	TH0］ 30	7018 250	70］－6	70173	압 25
	W］［10 40	砳昭 300	［1］－50			阿阿	6fiti 4	相 30
口1850	THET 50	阳限 400	761－40	THE］ 50	陦 400	760－4	THET 5	限阿 40
吅㕲 75	B60］ 60	B6If 500	明明－30		明碞 500	昭－${ }^{\text {a }}$	W6it 6	相 50
［100	70］ 70	700	701－20	70］ 70	限碞 700	깨）－2	\％ 7	阿碞
相 125	Wfuld 80	限碞 800	明－10	Wfill 80	71080 800	FP］－		相 80
明碞	이ํ） 90	cifor 900	明碞	Tidi 90	唯碞 900	Ofor	199	啊碞
明限 175	－6til 100	䅹 1000	明明	6相 100	相 1000	相 1	10	明时
限碞 200	限相 120	限相 1300	限相	碞时 120	限相 1300	限 2	时碞	
明碞	相相 140	相 1500	明明	相 140	明碞 1500	相 5	14	
阴明 250	吅时 150	阳昭 1700	吅 100	吅时 150	限昭 1700	吅㕲	陦的 15	
踦 300	相相 160	时明 1850	昭 150	明明 160	昭昭 1850	明明	明	
Range selection for mA			Range selection for Pot．			Range selection for 10 V		
Zero	Span		Zero	Span		Zero	Span	
¢ ${ }_{\text {¢ }}$	O－Nmy ma	－	¢	－－Nomy \％	우ำmit		OrNmyv	－－－nmy
111 Def．	1110 Def．	13.0	111 Def．	1111 Def．	180	11 Def．	1110 Def．	1.7
$1{ }^{1} 10$	5	Hifl 13.5	110	1010	H108 85	118－2．0	0	Fild 1.8
I．71．5			明 15	Tide 10	앱 90	－1．0	\％ide 0.1	¢ 1.9
相 2.0	W60］ 6.0	B6］ 15.0	6明 20	G615 15	相 95	－64－0．8	－6tict 0.2	WFP7 2.0
	710］ 6.5		明 25	71080 20	70］ 100		7010 0.3	7月07 2.5
相 3.0	䃀 7.0		明相 30	Widl 25		－0．5	Wifl 0.4	Brifl 3.0
明 3.5	砳时 7.5	明明 16.5	明相 35	767］ 30		成相－0．4	昭㿽 0.5	啊 4.0
相 4.0	Wbit 8.0	brif 17.0	明碞	G60］ 35		昒－0．3	bibl 0.6	昭碞 5.0
椚 4.5	［10］ 8.5	TPTH17．5	7月745	71780 40		70］－0．2	70180．7	7 7.0
㫿 5.0	W日］ 9.0		明 50	［1780 45				相明 8.0
砳限 5.5			明明 55	明明 50		吅 0		啊阿 9.0
明 6.0		砳 19.0	明 60	日fid 55		㖿 0.1	砳 1.0	
限明 6.5	限时 11.0	限时 19.5	明明 65	相 60		明明 0.2	限时 1.2	
明 7.0	时时 11.5	限时 20.0	明㕲	吅明 65		明吅 0.5	相时 1.4	
明时 7.5	砳的 12.0	砳昭 20.0	阳碞	吅昭		1.0	明明 1.5	
明 8.0	相 12.5	昭 20.0	明 80	昭帾 75		1.5	明明 1.6	

CONFIGURATION OVERVIEW

The configuration of the device, can be controlled by means of the push buttons and the 4-digit display on the front side of the device.
In normal operation, the display shows the actual value of the analog input.
To enter in the view mode, follow the next procedure:

1) press the "ESC" button : it will be displayed the label "In"
2) press the "ESC" button again, it will be displayed the input type value (see tab.4).
3) Keep to press the "ESC" button to visualize all of the setting values of the device (follow the next list:

" 4 LO"
\downarrow ESC
Shows Low Set-point of the $4^{\text {th }}$ threshold
" 4 HI "
\downarrow ESC
Shows High Set-point of the $4^{\text {th }}$ threshold
\downarrow ESC
"In L"
\downarrow ESC
Shows Low value of the input range
\downarrow ESC
"In H"
Shows High value of the input range
\downarrow ESC
"OutL"
Shows Low value of the output range
"OutH"
\downarrow ESC
Shows High value of the output range
"Out"
\downarrow ESC
Shows Output type ($0=$ current, $1=$ voltage)
\downarrow ES
"t on"
\downarrow ESC
Shows the delay time for the thresholds
"t 0 "
\downarrow ESC
Shows the initial delay time at the power-on」 $E S C$
4) To exit from the view mode don't press any button for 5 second: the device will automatically visualize the actual input measure.

THRESHOLD CONFIGURATION

To configure the threshold values press both the buttons ("SET"+"ESC") for at least 5 seconds.

1) Press the button "ESC" to scroll through to the list until the desired parameter to be configured appears.
2) Press the button "SET" to confirm the selection of the parameter; the display shows the value currently programmed.
3) Press the button "UP" or "DOWN" to modify the value: keeping pressed the button "UP" or "DOWN" to increase the speed of variation of the numbers.
4) When the desired value has been reached press both the buttons for at least 4 seconds. Don't press any button for 5 second to discard the changes.

5) Repeat the step from 1 up to 4 for each parameter to configure.

To exit from the threshold configuration don't press any button for 5 second: the device will automatically visualize the actual input measure in function of the programming performed.

ISOLATIONS

INSTALLATION INSTRUCTIONS

The device is suitable for fitting to DIN rails in the vertical position.
For optimum operation and long life follow these instructions:
When the devices are installed side by side it may be necessary to separate
them by at least 5 mm in the following case:

- If panel temperature exceeds $45^{\circ} \mathrm{C}$ and at least one of the overload
conditions exist.
Make sure that sufficient air flow is provided for the device avoiding to place raceways or other objects which could obstruct the ventilation slits. Moreover it is suggested to avoid that devices are mounted above appliances generating heat; their ideal place should be in the lower part of the panel.
Install the device in a place without vibrations.
Moreover it is suggested to avoid routing conductors near power signal cables (motors, induction ovens, inverters etc...) and to use shielded cable for connecting signals.

LIGHT SIGNALLING

LED	COLOR	STATE	DESCRIPTION
$R n$	RED	ON OFF	Relay [n] excited Relay [n] released

HOW TO ORDER

DAT 5028 can be supplied with the configuration specified by the customer It is necessary to specify the number of necessary thresholds (2 or 4). Refer to the "Technical Specification" section for the output type available.

ORDER CODE EXAMPLE:
DAT 5028-2
Number of thresholds : DAT 5028-2 (2 SPDT relay) DAT 5028-4 (2 SPDT relay + 2 SPST relay)

MECHANICAL DIMENSIONS (mm)

