Indice delle Figure e delle Tabelle

	Vista aerea dello stabilimento DEHN + SÖHNE3	Fig. 5.1.1.6	Duomo di Acquisgrana: modello con ambiente circostante e "sfere rotolanti" per i livelli di protezione II e III	
Fig. 2.1.1	Fulmine discendente (nube-terra)15		Fonte: Prof. Dr. A. Kern, Acquisgrana	53
Fig. 2.1.2	Meccanismo di scarica di un fulmine discendente negativo (fulmine nube-terra)16	Fig. 5.1.1.7	Profondità di penetrazione p della sfera rotolante	
Fig. 2.1.3	Meccanismo di scarica di un fulmine discendente positivo	Fig. 5.1.1.8	Impianto di captazione per strutture sul tetto	54
	(fulmine nube-terra)16	Fig. 5.1.1.9	Calcolo di Δh con diverse aste di captazione secondo il metodo della sfera rotolante	E 1
Fig. 2.1.4	Fulmine ascendente (terra-nube)16	Fi. F 1 1 10		
Fig. 2.1.5	Meccanismo di scarica di un fulmine ascendente negativo (fulmine terra-nube)17	Fig. 5.1.1.10 Fig. 5.1.1.11	Dispositivo di captazione a maglie Angolo di protezione e raggio della sfera rotolante confronta	-
Fig. 2.1.6	Meccanismo di scarica di un fulmine ascendente positivo (ful-mine terra-nube)17	Fig. 5.1.1.12	bile	
Fig. 2.1.7	Possibili componenti di un fulmine discendente18		al livello di protezione	
Fig. 2.1.8	Possibili componenti di un fulmine ascendente18	Fig. 5.1.1.13	•	
Fig. 2.2.1	Distribuzione di potenziale in caso di abbattimento del	Fig. 5.1.1.14	Esempio per impianto di captazione con angolo di protezione o	
	fulmine su un terreno omogeneo19	Fig. 5.1.1.15	Area protetta da un fune di captazione	
Fig. 2.2.2	Animali morti in seguito a folgorazione da tensione di passo 19	Fig. 5.1.1.16	Volume protetto da un'asta di captazione verticale	
Fig. 2.2.3	Aumento di potenziale dell'impianto di messa a terra di un edificio rispetto al potenziale di riferimento di terra attraverso	Fig. 5.1.1.17	Protezione di piccole strutture sul tetto da fulminazione diret con aste di captazione	ta 58
r: 224	il valore di cresta della corrente di fulminazione20	Fig. 5.1.1.18	Tetto a falda con staffa portafilo	58
Fig. 2.2.4	Messa in pericolo di impianti elettrici attraverso l'aumento di potenziale dell'impianto di messa a terra20	Fig. 5.1.1.19	Tetto piano con aste di captazione e staffe portafilo	58
Fig. 2.3.1	Tensione rettangolare indotta in circuiti attraverso la ripidità ∆i/∆t della corrente da fulminazione20	Fig. 5.1.1.20	Sistema di protezione contro i fulmini esterno con due pali isolate secondo il metodo dell'angolo di protezione: proiezior su una superficie verticale	
Fig. 2.3.2	Esempio di calcolo per tensioni quadrate indotte in spire a forma quadrata21	Fig. 5.1.1.21	Sistema di protezione contro i fulmini isolato, composto da due pali di captazione isolati, collegati tramite una fune di	ככ
Fig. 2.4.1	Conversione di energia nel punto di abbattimento del fulmine attraverso la carica della corrente di fulminazione21		captazione: proiezione su una superficie verticale attraverso due pali	59
Fig. 2.4.2	Effetti dell'arco elettrico della corrente impulsiva da fulmine su superficie metallica22	Fig. 5.1.2.1	Dispositivo di captazione su tetto a doppio spiovente	61
Fig. 2.4.3	Perforazione di lamiere prodotte dall'azione di archi elettrici di corrente a lunga durata22	Fig. 5.1.2.2	(ad es. PVC), h ≤ 0,5 m	
Fig. 2.5.1	Effetti del riscaldamento e della forza prodotti dall'energia	Fig. 5.1.2.3	Dispositivo di captazione supplementare per tubi di sfiato	51
119. 2.5.1	specifica della corrente da fulmine	Fig. 5.1.2.4	Edificio con impianto fotovoltaico Fonte: Blitzschutz di Wettingfeld, Krefeld	61
Fig. 2.5.2	Effetto della forza elettrodinamica tra conduttori paralleli23	Fig. 5.1.2.5	Antenna con asta di captazione isolata:	
Fig. 3.2.3.1	Densità di fulmini al suolo in Italia (Guida CEI 81-3:1999)31		fonte: Oberösterreichischer Blitzschutz, Linz, Austria	
Fig. 3.2.3.2	Area di raccolta equivalente A _d , dei fulmini diretti su una struttura isolata33	Fig. 5.1.3.1	Dispositivo di captazione	
Fig. 3.2.3.3	Area di raccolta equivalente A _m , A _i , A _i dei fulmini in prossimità	Fig. 5.1.3.2	Dispositivo di captazione su un tetto piano	
rig. 5.2.5.5	di una struttura33	Fig. 5.1.3.3	Applicazione di aste di captazione	
Fig. 3.2.9.1	Diagramma a flusso per la scelta delle misure di protezione39	Fig. 5.1.3.4	Ponticellamento dell'attico	
Fig. 3.2.10.1	Procedimento principale per la sola valutazione economica40	Fig. 5.1.3.5	Esempio per la protezione di un attico metallico quando non è ammessa la perforazione	
Fig. 3.2.10.2	Diagramma a flusso per la scelta delle misure di protezione per le perdite economiche41	Fig. 5.1.3.6	Guaina impermeabilizzante	63
Fig. 4.1	Componenti di un sistema di protezione contro i fulmini48	Fig. 5.1.4.1	Copertura metallica, esecuzione con ribordatura tonda	64
Fig. 4.1	Sistema di protezione contro i fulmini (LPS - Lightning Protec-	Fig. 5.1.4.2	Esempio di danno su copertura in lamiera	64
_	tion System)49	Fig. 5.1.4.3	Impianto di captazione per coperture in metallo - Protezione contro la perforazione	
Fig. 5.1.1	Metodo per la disposizione dei dispositivi di captazione su edifici alti50	Fig. 5.1.4.4a	Staffa portafilo per tetto in metallo	
Fig. 5.1.1.1	Contro scarica in partenza, che determina il punto di abbatti-	Fig. 5.1.4.4b	Staffa portafilo per tetto in metallo	65
	mento del fulmine51	Fig. 5.1.4.5	Installazione-tipo di una copertura in lamiera grecata, staffa portafilo con cavallotto	66
Fig. 5.1.1.2	Modello di sfera rotolante; fonte: Prof. Dr. A. Kern, Acquisgrana 51	Fig. 5.1.4.6	Installazione-tipo per una copertura con ribordatura	
Fig. 5.1.1.3	Utilizzo schematico del metodo della "sfera rotolante" su un edificio con una superficie complessa52	Fig. 5.1.4.7	Asta di captazione per lucernari su copertura con ribordatura	
Fig. 5.1.1.4	Nuovo edificio amministrativo:	Fi., F 4 F 4	tonda	
	modello con "sfera rotolante" per il livello di protezione I Fonte: WBG Wiesinger53	Fig. 5.1.5.1	Impianto di captazione per edifici con copertura morbida	
Fig. 5.1.1.5	Nuovo edificio della sede amministrativa dell'assicurazione	Fig. 5.1.5.2	Componenti per copertura morbida	
5	DAS: zone a rischio di fulminazione per il livello di protezione I	Fig. 5.1.5.3	Tetto in canna palustre	
	nella vista dall'alto (estratto) Fonte: WBG Wiesinger53	Fig. 5.1.5.4 Fig. 5.1.5.5	Fattoria storica con impianto di protezione esterno	
	TOTAL TED TELESTINGET	FIU. 3.1.3.3	JEZIONE UEN EUNICIO DINICIDALE	υY

www.dehn.it BLITZPLANER 321

Fig. 5.1.5.6	Descrizione di principio e illustrazione della posa della calata lungo le capriate69		Dispositivo di captazione per tetti di grandi dimensioni - Calate interne88
Fig. 5.1.5.7	Conduttura HVI attraverso il cornicione		Dispositivi di discesa per cortili interni
Fig. 5.1.6.1	Protezione contro i fulmini per tetti di uso parcheggio -	Fig. 5.2.3.1	Pali di captazione isolati dalla struttura89
3	Protezione dell'edificio		Pali di captazione con funi sospese89
Fig. 5.1.6.2	Protezione contro i fulmini per tetti di uso parcheggio - Protezione dell'edificio e delle persone70	Fig. 5.2.3.3	Pali di captazione ccon funi tese con collegamenti trasversali (maglie)89
Fig. 5.1.7.1	Tetto verde71	Fig. 5.2.4.1	Dispositvo di captazione isolato con distanziatori90
Fig. 5.1.7.2	Impianto di captazione su tetto verde71		Sviluppo teorico di una scarica in superficie su una calata
Fig. 5.1.7.3	Posa del conduttore sopra il manto di copertura71		isolata senza rivestimento speciale90
Fig. 5.1.8.1	Rischio derivante dal collegamento diretto delle costruzioni	Fig. 5.2.4.1.2	Componenti del conduttore HVI91
	sul tetto	Fig. 5.2.4.1.3	Conduttore HVI-I e componenti dal sistema DEHNconductor91
Fig. 5.1.8.2	Impianto di captazione isolato - Protezione mediante asta di captazione	Fig. 5.2.4.2	Dispositivi di captazione isolato per radiomobile - Applicazione sistema DEHNconductor90
Fig. 5.1.8.3	Asta di captazione con distanziatore73	Fig. 5.2.4.2.1	Integrazione di una nuova antenna 2G/3G nell'esistente
Fig. 5.1.8.4	Sostegno angolare dell'asta di captazione73		impianto di protezione contro i fulmini, tramite uso del
Fig. 5.1.8.5	Fissaggio dell'asta di captazione73	= = = = = = = = = = = = = = = = = = = =	conduttore HVI
Fig. 5.1.8.6	Sistema di captazione isoato per l'impianto fotovoltaico73	Fig. 5.2.4.2.2a	Collegamento alla struttura dell'antenna per il controllo del potenziale92
Fig. 5.1.8.7	Impianto di captazione isolato per strutture sul tetto74	Fig 5 2 4 2 2h	Tubo di sostegno nella zona dell'antenna92
Fig. 5.1.8.8	Protezione contro la corrosione nella zona di passaggio tramite un nastro anticorrosione per l'applicazione sotto terra74	E:	Macchina di ventilazione con asta di captazione e fune
Fig. 5.1.8.9	Posizionamento di un palo componibile in acciaio per la protezione contro i fulmini74	Fig. 5.2.4.2.3b	sospesa
Fig. 5.1.8.10	Impianto di captazione sospeso fonte: Blitzschutz Wettingfeld, Krefeld74	Fig. 5.2.4.2.4	Rispetto della distanza di sicurezza necessaria con la calata isolata a potenziale regoalto (HVI)93
Fig. 5.1.8.11	Treppiede per aste indipendenti74	Fig 5 2 4 2 5	Dispositivo di captazione con fune sospesa e calata isolata93
Fig. 5.1.8.12	Impianto di captazione isolato con DEHNiso-Combi75	Fig. 5.2.4.2.5	Vista totale94
Fig. 5.1.8.13	Dettaglio DEHNiso-Combi75		Dispositivo di captazione isolato e anello perimetrale isolato
Fig. 5.1.8.14	Impianto di captazione isolato con DEHNiso-Combi75	11g. 3.2.4.3.2	Fonte: H. Bartels S.r.l., Oldenburg94
Fig. 5.1.9.1	Disposizione della calata sul campanile	Fig. 5.2.4.3.3	Calata dell'anello perimetrale isolato95
Fig. 5.1.10.1	Impianto eolica con ricettori integrati nelle pale77		Vista totale - Nuovo impianto di protezione da fulmini
Fig. 5.1.10.2	Protezione contro i fulmini per anemometro77	•	esterno95
Fig. 5.1.11.1	Protezione dalle scariche dirette con aste indipendenti77	Fig. 5.2.4.4.1	Calcolo della distanza di sicurezza necessaria96
Fig. 5.1.11.2	Metodo per la disposizione degli organi di captazione su edifici secondo CEI EN 62305-3 (CEI 81-10/3)78	Fig. 5.4.1	Esempi dettagliati di una protezione contro i fulmini esterna su una struttura con tetto a falda e tegole98
Fig. 5.1.11.3	Asta di captazione indipendente con treppiede78	Fig. 5.4.2	Asta di captazione per camino98
Fig. 5.1.11.4	Mappa italiana con le zone di ventosità e i relativi valori per	Fig. 5.4.3	Applicazione su tetto piano98
	la pressione del vento e massima velocità del vento79	Fig. 5.4.4	Misure per dispersori ad anello98
Fig. 5.1.11.5	Confronto del momento flettente su aste di captazione	Fig. 5.4.5	Punti a rischio corrosione98
Fig. 5.1.11.6	indipendenti senza e con sostegno (lunghezza = 8,5 m)81 Modello FEM dell'asta di captazione indipendente senza	Fig. 5.4.1.1	Dispositivo di captazione - Compensazione della dilatazione con bandella100
F: F4447	sostegno (Lunghezza = 8,5 m)	Fig. 5.4.2.1a	Protezione contro i fulmini esterna di per un abitazione101
Fig. 5.1.11.7	Modello FEM dell'asta di captazione indipendente con sostegno (lunghezza = 8,5 m)82	Fig. 5.4.2.1b	Protezione contro i fulmini esterna di una struttura
Fig 5 2 2 1 1	Cappio in una calata84		industriale102
	Calate85	FIU. 3.4.Z.Z	Staffe portafilo DEHNsnap e DEHNgrip103
5	Organo di captazione con collegamento alla gronda85	Fig. 5.4.3.1	Staffa portafilo con DEHNsnap per tegole di colmo103
Fig. 5.2.2.1.4		Fin 5437	SPANNsnap con staffa portafilo in materiale plastico
Fig. 5.2.2.1.4	Utilizzo di elementi naturali - Nuove strutture in elementi		DEHNsnap
	prefabbricati in calcestruzzo86	Fig. 5.4.3.3 Fig. 5.4.3.4	FIRSTsnap per il montaggio su staffa di colmo già esistente103 Staffa portafilo per tetti con graffa punzonata - Utilizzo su
1 1y. J.L.L.L.L	Sottostruttura metallica con giunzioni per la continuità elettrica86	_	tegole marsigliesi
Fig. 5.2.2.2.3	Collegamento a terra della facciata metallica	FIG. 3.4.3.3	Staffa portafilo per tetti con graffa punzonata - Utilizzo su tegole piatte (ad esempio embrice)104
	Calata lungo il pluviale87		Staffa portafilo per tetti con graffa punzonata - Utilizzo su
	Punto di misura con numero di identificazione87	3	tetti in ardesia104
J		Fig. 5.4.3.7	Staffa portafilo per l'adattamento diretto alla sagoma

322 BLITZPLANER www.du

Fig. 5.4.3.8	Staffa portafilo per tetti per aggancio nella scanalatura inferiore della tegola105	Fig. 5.5.9	Massima tensione di passo U _s in base alla profondità di interramento per una bandella di terra rettilinea111
Fig. 5.4.3.9	ZIEGELsnap, per il fissaggio tra tegole piatte o lastre105	Fig. 5.5.10	Resistenza di terra R _A dei dispersori di profondità in base alla
Fig. 5.4.3.10	Staffa portafilo per tetti PLATTENsnap per costruzioni sovrapposte105	Fig. 5.5.11	loro lunghezza I, per terreni con diversa resistività ρ_E 112 Resistenza di terra R_Δ dei dispersori radiali incrociati (90°) in
Fig. 5.5.1	Potenziale di superficie e tensioni su dispersore di fondazione	g. 3.3	base alla profondità di interramento112
_	FE e dispersore di controllo SE percorso da corrente107	Fig. 5.5.12	Tensione totale di terra U _E tra conduttore di terra e superficie del terreno del dispersore radiale incrociato (90°) in base alla
Fig. 5.5.1.1	Lunghezze minime dei dispersori		distanza dal punto centrale di incrocio (profondità di interra-
Fig. 5.5.1.2	Dispersore di tipo B - Individuazione del raggio medio - Calcolo esemplificativo119	= = = 40	mento 0,5 m)
Fig. 5.5.1.3	Dispersore di tipo B - Individuazione del raggio medio119	Fig. 5.5.13	Resistenza di terra impulsiva R _{imp} di dispersori orizzontali a uno o più elementi radiali di pari lunghezza114
Fig. 5.5.2	Corrente in uscita da un dispersore a sfera108	Fig. 5.5.14	Fattore di riduzione p per il calcolo della resistenza di terra
Fig. 5.5.2.1	Dispersore di fondazione con conduttore uscente119	3	totale R _A di dispersori verticali collegati in parallelo114
Fig. 5.5.2.2	Maglia del dispersore di fondazione119	Fig. 5.5.15	Resistenza di terra R _A dei dispersori orizzontali e verticali in
Fig. 5.5.2.3	Dispersore di fondazione119		base alla lunghezza del dispersore l117
Fig. 5.5.2.4	Utilizzo del dispersore di fondazione119	Fig. 5.6.1	Rappresentazione di principio - Distanza di sicurezza136
Fig. 5.5.2.5	Disposizione del dispersore di terra per una fondazione a	Fig. 5.6.2	Differenza di potenziale in relazione all'altezza136
	strisce (parete dell'interrato isolata)120	Fig. 5.6.3	Pilone di captazione con k _c = 1
Fig. 5.5.2.6	Disposizione del dispersore di terra per una fondazione a	Fig. 5.6.4	Tetto piano con asta di captazione e ventilatore137
Fig. 5.5.2.7	strisce (parete dell'interrato e piastra di fondazione isolate) 120 Disposizione del dispersore di terra con platea di fondazione	Fig. 5.6.5	Determinazione di k _c per due pali con fune sospesa e
11g. 3.3.2.7	chiusa (completamente isolata)122	Fig. 5.6.6	dispersore di tipo B
Fig. 5.5.2.8	Punto fisso di messa a terra122	Fig. 5.6.7	Tetto spiovente con 4 calate
Fig. 5.5.2.9	Disposizione del dispersore di fondazione con platea di	Fig. 5.6.8	Valori del coefficiente k _c in caso di una rete di conduttori di
	fondazione chiusa "vasca bianca" 123	11g. 5.0.0	captazione a maglia e un dispersore di tipo B139
Fig. 5.5.2.10	Disposizione del dispersore all'esterno dell'impermeabilizzazio-	Fig. 5.6.9	Fattori di materiale con asta di captazione su un tetto piano139
Fig. 5.5.2.11	ne "vasca nera"124 Disposizione del dispersore fuori dalla chiusura ermetica	Fig. 5.6.10	Valori del coefficiente $k_{\rm c}$ in caso di una maglia a funi di captazione, anelli che collegano le calate e il dispersore di tipo B 141
	"vasca nera" con passaggio supplementare dispersore- edificio nella zona dell'acqua in pressione121	Fig. 5.7.1	Raffigurazione - Tensioni di contato e di passo142
Fig. 5.5.3		Fig. 5.7.1.1	Zona di protezione per una persona145
11g. 5.5.5	Resistenza di terra R_A di un dispersore a sfera con Ø20 cm e 3 m di profondità con ρ_F = 200 Ω m in base alla distanza	Fig. 5.7.1.2	Costruzione del conduttore CUI145
	x dal centro della sfera	Fig. 5.7.1.3	Prova in tesnione sotto pioggia146
Fig. 5.5.3.1	Dispersore ad anello attorno ad un'abitazione125	Fig. 5.7.1.4	Illustrazione conduttore CUI146
Fig. 5.5.4	Resistività del terreno ρ_{E} con diversi tipi di terreno108	Fig. 5.7.1.5	(a) Spira calata persona, (b) Induttanza mutua M e tensione
Fig. 5.5.4.1	Innesti dei dispersori di profondità DEHN125		indotta U _i 146
Fig. 5.5.4.2	Installazione del dispersore di profondità con supporto e martello vibratore126	Fig. 5.7.2	Regolazione del potenziale - Illustrazione schematica e andamento del gradiente143
Fig. 5.5.5	Resistività del terreno ρ_{E} in base alla stagione senza	Fig. 5.7.3	Possibile regolazione del potenziale nella zona di ingresso144
	l'influenza delle precipitazioni (profondità di interramento del dispersore < 1,5m)109	Fig. 5.7.4	Esecuzione della regolazione del potenziale per una torrefaro o palo di radiotelefonia144
Fig. 5.5.6	Determinazione della resistività del terreno ρ_{E} con un ponte di misura a quattro morsetti secondo il metodo WENNER109	Fig. 5.7.5	Regolazione del potenziale con collegamento al dispersore ad anello / dispersore di fondazione144
Fig. 5.5.6.1	Impianto di messa a terra interconnesso di uno stabilimento industriale127	Fig. 6.1.1	Principio dell'equipotenzialità antifulmine comprendente il siste- ma equipotenziale principale e il sistema equipotenziale per la
Fig. 5.5.7	Dipendenza della resistenza di terra R_A dalla lunghezza I del dispersore di superficie con diversa resistività del terreno $\rho_E 111$	Fi., 6 1 2	protezione contro i fulmini148
Fig. 5.5.7.1.1	Esempio di un elettrodo di misura non polarizzabile (elettrodo	Fig. 6.1.2 Fig. 6.1.3	Barra equipotenziale K12, Art. 563 200
	rame/solfato di rame) per la presa di un potenziale nell'elettro-	Fig. 6.1.4	Collare di messa a terra per tubi, Art. 408 014
	lito (disegno in sezione)	Fig. 6.1.5	Fascetta di messa a terra, Art. 540 910151
	Elemento galvanico: ferro/rame	Fig. 6.1.6	Collegamento equipotenziale passante
3	Elemento di concentrazione	Fig. 6.2.1	Scaricatore di corrente da fulmine DEHNbloc NH sulle barre
	Elemento di concentrazione: ferro nel terreno / ferro nel calce- struzzo131	-	di distribuzione del quadro contatori (vedi 6.2.2)152
Fig. 5.5.7.2.4	Elemento di concentrazione: acciaio zincato nel terreno / acciaio (nero) nel calcestruzzo131	Fig. 6.2.2	Scaricatore combinato omnipolare per il sistema di alimenta- zione principaleDEHNventil ZP152
Fig. 5.5.8	Tensione di terra $U_{\rm E}$ tra il conduttore di terra e la superficie del terreno, in base alla distanza dal dispersore per bandella (lunga 8 m) a profondità diverse111	Fig. 6.3.1	Sistema equipotenziale per la protezione contro i fulmini con sistema di captazione isoltato DEHNconductor per impianti d'antenna professionali secondo CEI EN 62305-3 (CEI 81-10/3)153

www.dehn.it BLITZPLANER 323

Fig. 6.3.2	Costruzione di un impianto di captazione isolato per antenna	Fig. 7.6.2.1	Un solo SPD (0/1/2) necessario (LPZ 2 integrata in LPZ 1)172
	radiombile154	Fig. 7.6.2.2	DEHNventil M TT 255172
Fig. 6.3.3	Sistema di connessione per schermi tipo SAK a tenuta di corrente da fulmine154	Fig. 7.6.3.1	Semplice combinazione con le sigle di coordinamento173
Fig. 6.3.4	Equipotenzialità antifulmine per con BLITZDUCTOR CT per un allacciamento di telecomunicazione	Fig. 7.7.1.1	Collettore equipotenziale ad anello e punto fisso di messa a terra per la connessione di corpi metallici174
Fig. 6.3.5	Quadro equipotenziale DEHN (DPG LSA) a tenuta di corrente da fulmine per allacciamenti in tecnica a striscie per	Fig. 7.7.2.1	Sistema di protezione contro i fulmini con schermatura locale e protezione dalle sovratensioni coordinata175
	LSA-2/10155	Fig. 7.7.2.2	DEHNflex M175
Fig. 7.1.1	Concetto di zone di protezione da fulminazione156	Fig. 7.7.2.3	Limitatore di sovratensione multipolare DEHNguard M TT176
Fig. 7.1.2	Esempio per l'esecuzione del concetto di zone di protezione da fulminazione LPZ157	Fig. 7.7.3.1 Fig. 7.8.1.1	Protezione per utilizzatori elettronici industriali176 Scaricatore di corrente da fulmine DEHNbloc tripolare e
Fig. 7.3.1	Riduzione del campo magnetico attraverso schermature a gri-		DEHNventil ZP177
	glia159	Fig. 7.8.1.2	DEHNguard TT H LI - Limitatore di sovratensione multipolare177
Fig. 7.3.1.1	Schermo non collegato - Nessuna protezione contro l'accop- piamento capacitivo/induttivo164	Fig. 7.8.1.3	DEHNventil M TNS - Scaricatore combinato modulare177
Fig. 7.3.1.2	Schermo collegato su entrambi i lati - Protezione contro l'accoppiamento capacitivo/induttivo164	Fig. 7.8.2.1	Coordinamento secondo il metodo dell'energia passante di 2 dispositivi di protezione e un apparecchio utilizzatore, cascata secondo CEI EN 61643-21, CEI 37-6178
Fig. 7.3.1.3	Schermo collegato su entrambi i lati - Messa a terra dello schermo diretta e indiretta164	Fig. 7.8.2.2	Esempio per il coordinamento energetico nell'applicazione degli scaricatori secondo la classe degli scaricatori
Fig. 7.3.1.4	Connessione schermo165		Yellow/Line e attribuzione del simbolo della classe scaricatore Yellow/Line178
Fig. 7.3.1.5	Collegamento dello schermo sui due lati - Schermatura contro accoppiamento capacitivo/induttivo165	Fig. 8.1.1	Utilizzo di scaricatori negli impianti di alimentazione elettrica (schema di principio)181
Fig. 7.3.2	Campo magnetico in caso di fulminazione (LEMP)159	Fig. 8.1.3.1	RCD distrutto da un fulmine
Fig. 7.3.3	Volume per apparecchi elettronici all'interno della LPZ 1159	Fig. 8.1.3.2	Circuito di protezione "3-0" nel sistema TN-C186
Fig. 7.3.4	Campo magnetico in caso di fulminazione (LEMP)160	Fig. 8.1.3.3a	Circuito di protezione "4-0" nel sistema TN-S
Fig. 7.3.5	Campo magnetico in caso di fulminazione remota (LEMP)160	Fig. 8.1.3.3b	Circuito di protezione "3+1" nel sistema TN-S186
Fig. 7.3.6	Utilizzo di barre di armatura in una struttura per la scherma-	Fig. 8.1.3.4	Utilizzo degli SPD nel sistema TN-C-S187
Eig 7272	tura e il collegamento equipotenziale161 Rete elettrosaldata zincata per la schermatura di un	Fig. 8.1.3.5	Utilizzo degli SPD nel sistema TN-S
Fig. 7.3.7a Fig. 7.3.7b	edificio161 Utilizzo della rete elettrosaldata zincata per la schermatura,	Fig. 8.1.3.6	Utilizzo degli SPD nel sistema TN - Esempio palazzina uffici con separazione del PEN nel quadro generale188
11g. 7.5.7b	ad esempio in caso di tetto verde161	Fig. 8.1.3.7	Utilizzo degli SPD nel sistema TN - Esempio palazzina uffici
Fig. 7.3.8	Schermatura per edificio162		con separazione del PEN nel quadro di distribuzione secondaria189
Fig. 7.3.9	Collettore di terra ad anello162	Fig. 8.1.3.8	Utilizzo degli SPD nel sistema TN - Esempio impianto industriale
Fig. 7.4.1	Rete equipotenziale in una struttura166	119. 6.1.3.6	con separazione del PEN nel quadro di distribuzione secon-
Fig. 7.4.2	Collettore equipotenziale ad anello in un locale EDP166		dario190
Fig. 7.4.3	Collegamento del collettore ad anello al sitema equipotenziale	Fig. 8.1.3.9	Utilizzo di SPD nel sistema TN - Esempio di edificio unifamiliare191
Eig 7.4.4	attraverso punto fisso di messa a terra	Fig. 8.1.4.1	Sistema TT (230/400 V); versione di circuito "3+1"192
Fig. 7.4.4 Fig. 7.4.5	Integrazione di sistemi elettronici nella rete equipotenziale 167 Combinazione dei metodi di integrazione secondo la figura	Fig. 8.1.4.2	Utilizzo di SPD nel sistema TT193
	7.4.4 Integrazione nella rete equipotenziale167	Fig. 8.1.4.3	Utilizzo di SPD nel sistema TT - Esempio di casa unifamilia- re193
Fig. 7.5.1.1	Connessione EB al punto fisso di terra	Fig. 8.1.4.4	Utilizzo di SPD nel sistema TT - Esempio palazzina uffici194
Fig. 7.5.1.2	Collegamento PAS al punto fisso di messa a terra165	Fig. 8.1.4.5	Utilizzo di SPD nel sistema TT - Esempio impianto industriale195
Fig. 7.5.2.1	Trasformatore all'esterno della struttura169	Fig. 8.1.5.1a	
Fig. 7.5.2.2	Trasformatore all'interno della struttura (zona LPZ 0 integrata nella zona LPZ 1)169	Fig. 8.1.5.1b	Sistema IT con neutro distribuito; circuito "4-0"196
Fig. 7.5.2.3	Esempio del sistema equipotenziale in una struttura con	Fig. 8.1.5.1c	Sistema IT con neutro distribuito; circuito "3+1"196
3	diversi punti di entrata delle masse esterne e di un collettore	Fig. 8.1.5.2	Utilizzo di SPD nel sistema IT senza neutro distribuito197
	ad anello interno come collegamento delle barri equipoten- ziali169	Fig. 8.1.5.3	Utilizzo di SPD nel sistema IT 400 V - Esempio senza neutro distribuito197
Fig. 7.5.2.4	Esecuzione della protezione contro i fulmini interna con un punto di entrata comune a tutti i servizi170	Fig. 8.1.5.4	Utilizzo di SPD nel sistema IT 230/400 V - Esempio con conduttore neutro distribuito198
Fig. 7.5.2.5	Scaricatore combinato DEHNventil170	Fig. 8.1.6.1	Collegamento a V di dispositivi di protezione da
Fig. 7.5.2.6	Collegamento equipotenziale antifulmine per sistema di alimentazione e informatico centrale in un solo punto170	Fig. 8.1.6.2	sovratensione
Fig. 7.5.2.7	Scaricatore di corrente da fulmine nel passaggio LPZ 0 _A – 1171	Fin 0 4 C 2	Rappresentazione unipolare
Fig. 7.5.3.1	Confronto delle ampiezze delle corrente di prova forma d'onda 10/350 µs e 8/20 µs a pari carico172	Fig. 8.1.6.3	Morsetti doppio STAK 2x16199

324 BLITZPLANER www.deh

Fig. 8.1.6.4	Collegamento dei dispositivi di protezione dalle sovratensioni nella diramazione199	Fig. 8.2.6	Caratteristica di innesco di uno scaricatore a gas con du/dt = 1 kV/µs209
Fig. 8.1.6.5	DEHNbloc Maxi S: Scaricatore di corrente da fulmine coordinato con prefusibile integrato199	Fig. 8.2.7	Circuito di prova per la determinazione della tensione di limitazione210
Fig. 8.1.6.6	Limitatore di sovratensione VNH Tipo 2 per l'utilizzo con portafusibili NH198	Fig. 8.2.8	Limitazione della tensione con corrente impulsiva di scarica nominale210
Fig. 8.1.6.7	Lunghezza di collegamento massime suggerite per i dispositivi	Fig. 8.2.9	Corrente nominale del BLITZDUCTOR CT210
-	di protezione dalle sovratensioni nella diramazione200	Fig. 8.2.10	Banda di frequenza tipica di un BLITZDUCTOR CT210
Fig. 8.1.6.8a	Punto di vista dell'utilizzatore, posa sfavorevole dei conduttori201	Fig. 8.2.11	Edificio con LPS esterno e cavi installati tra due edifici secondo il concetto di protezione da fulminazione a zone211
Fig. 8.1.6.8b		Fig. 8.2.12	Edificio senza LPS esterno e linee esterne entranti211
Fig. 8.1.6.9	Disposizione dei dispositivi di protezione nell'impianto e la	Fig. 8.2.13	Edificio con LPS esterno e linee interne posate secondo il concetto di protezione da fulminazione a zone211
= 0.4.6.40	lunghezza di collegamento efficace risultante201	Fig. 8.2.14	Edificio senza LPS esterno e linee interne211
Fig. 8.1.6.10	Cablaggio a V	Fig. 8.2.15	Schema a blocco - Misura temperatura214
Fig. 8.1.6.11	Cablaggio a V dello scaricatore combinato DEHNventil M TNC tramite pettine201	Fig. 9.1.1	Schema di pricipio di un convertitore di frequenza228
Fig. 8.1.6.12	Cablaggio in parallelo202	Fig. 9.1.2	Connessione dello schermo del cavo d'alimentazione motore
Fig. 8.1.6.13	Posa dei conduttori	5	secondo i requisiti EMC228
Fig. 8.1.7.1	Circuito di protezione One-port	Fig. 9.1.3	Schema generale di un convertitore di frequenza con limitatori
Fig. 8.1.7.2	Circuito di protezione Two-port	_,	di sovratensione
Fig. 8.1.7.3	SPD con collegamento passante	Fig. 9.2.1	Isolamento del suolo per la riduzione delle tensioni di contatto derivanti da fulminazioni su un palo di illuminazione231
Fig. 8.1.7.4	Esempio DEHNventil, DV M TNC 255203	Fig. 9.2.2	Controllo del potenziale per la riduzione delle tensioni di
Fig. 8.1.7.5	Esempio DEHNguard (M) TNS/TT204	11g. 5.2.2	passo causati da fulminazioni su un palo di illuminazione232
Fig. 8.1.7.6	Esempio DEHNrail	Fig. 9.2.3	Corpo illuminante esterno 230 V a parete in zona di
Fig. 8.1.7.7	Comportamento dei fusibili NH durante la sollecitazione con		protezione da fulminazione 0 _A 232
	corrente impulsiva 10/350 µs205	Fig. 9.2.4	Corpi illuminanti esterni 3 x 230/400 V su palo in zona di protezione da fulminazione 0 _A 233
Fig. 8.1.7.8	Corrente e tensione su un fusibile 25 A-NH che sta fondendo durante la sollecitazione con corrente impulsiva di fulmine205	Fig. 9.2.5	Corpo illuminante esterno 230 V a parete in zona di protezione da fulminazione $0_{\rm B}$ 233
Fig. 8.1.7.9	Utilizzo di un fusibile di protezione separato per lo scaricatore205	Fig. 9.2.6	Corpo illuminante esterno 3 x 230/400 V su palo in zona di protezione da fulminazione 0 _B 233
Fig. 8.1.7.10	Riduzione della corrente susseguente attraverso il principio RADAX-Flow brevettato206	Fig. 9.3.1	Schema di sistema per un impianto biogas234
Fig. 8.1.7.11	Selettività della corrente susseguente del DEHNventil M all'intervento di fusibili NH con diverse correnti nominali206	Fig. 9.3.2	Applicazione del sistema DEHNiso-Combi per la protezione di un fermentatore con copertura in tela236
Fig. 8.2.1	Classificazione degli scaricatori207	Fig. 9.3.3	Protezione di un fermentatore con copertura in tela con
Fig. 8.2.1.1	Accoppiatore ottico - Schema di principio216	5	pali di captazione componibili in acciaio236
Fig. 8.2.2	Comportamento di limitazione	Fig. 9.3.4	Protezione del fermentatore tramite asta di captazione
Fig. 8.2.2.1	Modello dei vari livelli di edificio217	=	isolata con 1 conduttura HVI237
Fig. 8.2.3	Indicazione su particolari applicazioni208	Fig. 9.3.5	Protezione del fermentatore tramite asta di captazione isolata con 2 condutture HVI237
Fig. 8.2.3.1	Cablaggio generico	Fig. 9.3.6	Fermentatore in lastre metalliche avvitate
Fig. 8.2.3.2	Effetti da fulmine in un cablaggio IT219	Fig. 9.3.7	Protezione del fermentatore in lastre metalliche con disposi-
Fig. 8.2.4	Tensione nominale	119. 5.5.7	tivo di captazione isolato238
Fig. 8.2.4.1	Calcolo di L ₀ e C ₀	Fig. 9.3.8	Serbatoio in acciaio saldato238
Fig. 8.2.4.2a	SPD a sicurezza intrinseca	Fig. 9.3.9	Impianto di terra ammagliato per impianto biogas239
Fig. 8.2.4.2b	Schema di principio del BXT ML4 BD EX 24222	Fig. 9.3.10	Estratto di un disegno schematico per un impianto biogas240
Fig. 8.2.4.3	SPD in impianti a rischio d'esplosione - Tenuta all' isolamento	Fig. 9.3.11	Protezione da sovratensioni per reti informatiche242
11g. 0.2.4.5	> 500 V AC223	Fig. 9.3.12	Moduli scaricatore combinato con LifeCheck243
Fig. 8.2.4.4	Caso di applicazione - Tenuta all'isolamento < 500 V AC224	Fig. 9.3.13	Scaricatore di sovratensione DEHNpipe per l'esterno da
Fig. 8.2.5	Circuito di prova per la determinazione della tensione di limitazione con velocità di salita della tensione du/dt =	Fig. 9.4.1	avvitare su apparecchi in campo a due fili
Eig 0 2 F 1	1 kV/µs	Eig 0 4 2	•
Fig. 8.2.5.1	Installazione corretta	Fig. 9.4.2	Suddivisione della centrale di controllo in zone di protezione da fulminazione LPZ246
Fig. 8.2.5.2	Installazione più frequente	Fig. 9.4.3	Linee entranti nella centrale di controllo247
Fig. 8.2.5.3	Collegamento equipotenziale eseguito in modo errato226	Fig. 9.4.4	Metodo dell'angolo di protezione secondo CEI EN 62305-3248
Fig. 8.2.5.4	Posa di conduttori errata	Fig. 9.4.5	Sistema equipotenziale secondo CEI EN 62305-3248
Fig. 8.2.5.5	Separazione dei cavi nei canali227		

www.dehn.it BLITZPLANER 325

Fig. 9.4.6	DEHNventil nel quadro di comando per la protezione dell'impianto di alimentazione249	Fig. 9.10.2	Protezione contro i fulmini e le sovratensioni, cablaggio tra edifici senza connessione dei sistemi di messa a terra270
Fig. 9.4.7	Dispositivo di protezione da sovratensioni DCO ME 24 nel quadro di comando per la protezione del completo sistema	Fig. 9.10.3	Protezione contro i fulmini e le sovratensioni, cablaggio tra edifici con connessione dei sistemi di messa a terra271
Fig. 9.4.8	CMR250 Dispositivo di protezione da sovratensione DCO ME 24 nel quadro di comando, entrata dei cavi dal basso250	Fig. 9.10.4	Protezione contro i fulmini e le sovratensioni, cablaggio tra edifici senza connessione dei sistemi di messa a terra, con cablaggio del KNX in fibra ottica271
Fig. 9.5.1	Distanze orizzontali e veritcali per antenne che non necessitano di un collegamento a terra251	Fig. 9.11.1	Edificio amministrativo con impianti di elevata richiesta di disponibilità272
Fig. 9.5.2	Esempi di dispersori ammessi252	Fig. 9.12.1	Esempio di sistema M-Bus274
Fig. 9.5.3	Messa a terra e collegamenti equipotenziali per antenne su edifici senza LPS eterno253	Fig. 9.12.2	Concetto di protezione per sistema M-Bus per edifici con protezione contro i fulmini esterna276
Fig. 9.5.4	Antenna con asta di captazione su copertura piana di edifici con LPS esterno253	Fig. 9.12.3	Concetto di protezione per sistema M-Bus per edifici senza protezione contro i fulmini esterna278
Fig. 9.5.5	Antenna con asta di captazione e distanziatori ad elevata capacità di isolamento su tetto a falda di edifici con LPS esterno253	Fig. 9.13.1	Protezione contro i fulmini e sovratensioni per SIMATIC NET PROFIBUS FMS e DP279
Fig. 9.5.6	Limitatori di sovratensione a valle della barra equipoten-	Fig. 9.13.2	Protezione da sovratensione per linee bus PROFIBUS PA280
	ziale per gli schermi dei cavi coassiali in impianti d'antenna con LPS esterno e con dispositivo di captazione isolato254	Fig. 9.14.1	Protezione contro i fulmini e le sovratensioni per ADSL con terminale analogico284
Fig. 9.5.7	Limitatori di sovratensione a valle della barra equipoten- ziale per gli schermi dei cavi coassiali in impianti d'antenna senza LPS esterno e con dispositivo di captazione isolato254	Fig. 9.14.2	Protezione contro i fulmini e le sovratensioni per allacciamento ISDN e ADSL284
Fig. 9.5.8	Scaricatore combinato a valle della barra equipotenziale per gli schermi dei cavi coassiali in impianti d'antenna senza LPS	Fig. 9.14.3	Protezione da sovratensioni per impianti TC "ISDN multiplex primario"285
Fig. 9.5.8	esterno	Fig. 9.15.1	Suddivisione di un impianto EX in zone di protezione da fulminazione (LPZ)286
11g. 3.3.6	gli schemi dei cavi coassiali in impianti di distribuzione interrati254	Fig. 9.15.2	Sistema di captazione con aste e funi di captazione per un serbatoio287
Fig. 9.6.1	Impianto di mungitura moderno256	Fig. 9.15.3	Esecuzione dell'equipotenzialità antifulmine secondo CEI EN
Fig. 9.6.2	Dosaggio automatico del mangime256		62305-3 (CEI 81-10/3) su base del collegamento equipotenziale principale secondo CEI 64-410, -540288
Fig. 9.6.3	Impianto di aerazione e lavaggio256	Fig. 9.15.4	DEHNventil DV M TT 255 nel quadro di comando per la
Fig. 9.6.4	Impianto di riscaldamento con recupero del calore e fornitura dell'acqua industriale257	Fig. 9.15.5	protezione sull'alimentazione288 Dispositivi di protezione da sovratensioni in un circuito a
Fig. 9.6.5	Quadri di comando per l'impianto di mungitura automatico 257	119. 5.15.5	sicurezza intrinseca288
Fig. 9.6.6	Mucca con collare e chip di registrazione257	Fig. 9.15.6	BCT MOD MD EX 24 per circuiti a sicurezza intrinseca289
Fig. 9.6.7	Protezione contro i fulmini e le sovratensioni nell'agricoltura, abitazione con ufficio258	Fig. 9.15.7	Limitatore di sovratensione per apparecchi in campo - DEHNpipe, DPI MD EX 24 M2290
Fig. 9.6.8	Protezione contro i fulmini e le sovratensioni nell'agricoltura, stalle258	Fig. 9.16.1	Laboratorio della DEHN + SÖHNE corrente impulsiva massima 200 kA dell'onda 10/350 µs292
Fig. 9.7.1	Impianto di videosorveglianza - Protezione da fulmine e sovratensione260	Fig. 9.16.2 Fig. 9.16.3	Concetto di protezione a zone per impianto eolico293 Rete di terra per un impianto ad energia eolica294
Fig. 9.7.2	Telecamera nell'area protetta di un'asta di captazione261	Fig. 9.16.4	Installazione dello scaricatore combinato DEHNbloc Maxi nel
Fig. 9.7.3	Impianto di videosorveglianza - Protezione da sovratensioni262	rig. 9.16.4	sistema 400/690 V TN-C294
Fig. 9.8.1	inpianto elettroacustico modulare con dispositivi di protezione da sovratensioni263	Fig. 9.16.5	Limitatore di sovratensione DEHNguard, DG MOD 750 + DG M WE 600295
Fig. 9.8.2	Struttura senza protezione contro i fulmini esterna e alto- parlante a tromba in LPZ O _A protetto con scaricatore	Fig. 9.16.6	Installazione degli scaricatori di corrente da fulmine e da sovratensione BLITZDUCTOR XT295
	combinato264	Fig. 9.17.1	Stazione radiomobiole duale296
Fig. 9.8.3	Struttura con protezione contro i fulmini esterna e alto-	Fig. 9.17.2	Schema di principio296
Fi 0.0.1	parlante a tromba in LPZ 0 _B protetto con limitatore di sovratensione	Fig. 9.17.3	Costruzione principale di una RBS con applicazione di DVA CSP 3 P 100 FM e DG M TT 275297
Fig. 9.9.1	Protezione contro i fulmini e sovratensioni di una centrale antintrusione in tecnica digitale	Fig. 9.18.1.1	Scaricatore combinato tipo 1, DEHNlimit PV, per la protezione di inverter fotovoltaici dalle sovratensioni anche in
Fig. 9.9.2	Protezione contro i fulmini e sovratensioni di una centrale antincendio - loop analogico266		caso di fulminazioni dirette300
Fig. 9.9.3	Protezione contro i fulmini e sovratensioni di una centrale antintrusione in tecnica analogica267	Fig. 9.18.1.2	Limitatore PV unipolare tipo 2, DEHNguard PV 500 SCP, con dispositivo di corto circuito300
Fig. 9.9.4	Protezione contro i fulmini e sovratensioni di una centrale	Fig. 9.18.1.3	Guasto all'isolamento sul generatore PV301
J	antincendio - in tecnica analogica267	Fig. 9.18.1.4	Sovraccarico del limitatore di sovratensione per causa di un guasto all'isolamento301
Fia. 9.10.1	Applicazione BUStector269		gaasto an isolamento

326 BLITZPLANER www.de

Fig. 9.18.1.5	L'attivazione del dispositivo di sezionamento e di c.to c.to del DEHNguard PV 500 SCP garantisce il funzionamento sicuro	Tabella 5.4.1.2	Elementi di dilataz Applicazione racco
Fig. 9.18.1.6	anche in caso di guasto nel generatore PV301 Concetto di protezione dalle sovratensioni per un impainto	Tab. 5.4.2.1a	Elementi per la pro un'abitazione
Fig. 9.18.1.7	PV su un edificio senza protezione contro i fulmini esterna302 Concetto di protezione dalle sovratensioni per un impainto	Tab. 5.4.2.1a	Elementi per la pro struttura industrial
119. 5.10.11.7	PV su un edificio con protezione contro i fulmini esterna e rispetto della distanza di sicurezza s302	Tabella 5.5.1	Formule per il calc tipi di dispersore
Fig. 9.18.1.8	Concetto di protezione dalle sovratensioni per un impainto PV su un edificio con protezione contro i fulmini esterna e	Tab. 5.5.7.2.1	Valori potenziali e usati
Fig. 9.18.2.1	senza rispetto della distanza di sicurezza s304 Mappa di un impianto PV con grandi dimensioni posto in	Tab. 5.5.7.4.1	Combinazione di n diverse condizioni
	campo	Tabella 5.5.8.1	Materiale, forma e
Fig. 9.18.2.2	Schema di principio della protezione dalle sovratensioni per una centrale fotovoltaica307	Tabella 5.7.1	
Fig. 9.18.2.3	Concetto di protezione per rilievo e elaborazione dati308	Tabella 6.1.1	Sezioni per i condu
		Tabella 7.2.1	Gestione della pro
Tabella 1.1.1	Norme per la protezione contro i fulmini dal 01.06.200611	rabella 71211	che sostanziali del
Tabella 1.1.3	Classificazione dei dispositivi di protezione dalle sovratensioni (SPD)14	Tabella 7.3.1	Attenuazione mag ravvicinata
Tabella 2.5.1	Aumento della temperatura ΔT in K di diversi materiali	Tabella 7.3.1.1	Resistenza specific
T. II 0.64	conduttori23	Tabella 7.3.1.2	? Tenuta alla tensior
Tabella 2.6.1	Valori limite dei parametri di protezione contro i fulmini e rispettive probabilità24	Tabella 7.5.2.1	Portata di corrente
Tabella 2.6.2	Valori limite dei parametri di protezione contro i fulmini e rispettive probabilità24		dispositivi di prote denza al livello di in bassa tensione .
Tabella 3.2.3.1	Coefficiente di posizione C _d 32	Tabolla 7 9 2 1	Simboli della class
	PArea di raccolta A _l e A _i in m ² 32		Attribuzione della
	Coefficiente ambientale C _e 33	Tabella 7.0.2.2	LPZ
	Probabilità di danno P ₈ per la definizione delle misure di protezione contro i danni materiali34	Tabella 8.1.1	Classificazione dei CEI, IEC e EN
	Probabilità di guasto P _{SPD} per la definizione delle misure di protezione - Dispositivi di protezione dalle sovratensioni (SPD),	Tabella 8.1.7.1	Coefficiente di ma con diversi materia
	subordinato al livello di protezione LPL35	Tabella 8.2.1	Marcatura dei mod
Tabella 3.2.5.1	Tipi di danno e tipi di perdita subordinati al punto d'impatto del fulmine36	Tabella 8.2.2	Correnti nominali d
Tahella 3 2 7 1	Componenti di rischio	Tabella 8.2.3	Criteri di scelta per
	Tipici valori di rischio tollerabile R _T 39	Tabella 8.2.5.1	Separazione dei co
	Intervalli massimi delle verifiche dell'LPS44		tensione (secondo
	Relazioni tra livello di protezione, criterio di intercettazione E_{i_r} distanza della scarica finale h_{g} e il minimo valore di cresta della	Tabella 9.2.1	Dimensioni minime mento dei pali di il all'impianto dell'ed
T-1-11- E 4 4 2	corrente I	Tabella 9.3.1	DEHNiso-Combi Se
	Flessione della sfera rotolante con due aste oppure due conduttori di captazione paralleli55	Tabella 9.3.2	Scelta materiale pe equipotenziale
	BLato di magliatura55	Tabella 9.3.3	Protezione da sovr
Tabella 5.1.1.4	I Angolo di protezione $lpha$ dipendente dal livello di protezione contro i fulmini57		Protezione da sovr
Tabella 5.1.1.5	Spessore minimo delle lamiere metalliche	Tabella 9.3.5	Scaricatori di sovra
	Protezione contro i fulmini per coperture in metallo - Altezza	Tabella 9.3.6	Scaricatori di sovra
iabella 3.1.1.1	delle punte di captazione65	Tabella 9.7.1	Protezione da fulmi
Tabella 5.2.1.1	Valori tipici della distanza tra le calate secondo	Tabella 9.7.2	Protezione da fulmi
	CEI EN 62305-3 (CEI 81-10/3)83		Descrizione degli s
Tabella 5.2.2.1	Aumento massimo della temperatura ΔT in K dei diversi mate-		Scelta dei dispositi
Tabella 5.3.1	riali per calate84 Materiale, forma e sezioni minime di conduttori di captazione,		Descrizione degli s
iduelld 3.3.1	aste di captazione e conduttori di discesa97		Velocità massima
Tabella 5.4.1	Combinazioni di materiali	Tabella 9.12.2	Valori relativi a cap
	Calcolo della dilatazione termica ΔL dei conduttori metallici	Tahalla 0 12 2	di protezione da so Scelta dello scaricat
	nella protezione contro i fulmini100	iduella 9.12.3	oceita deilo scaricat

Tabella 5.4.1.2	Elementi di dilatazione nella protezione contro i fulmini - Applicazione raccomandata100
Tab. 5.4.2.1a	Elementi per la protezione contro i fulmini esterna di un'abitazione101
Tab. 5.4.2.1a	Elementi per la protezione contro i fulmini esterna di una struttura industriale102
Tabella 5.5.1	Formule per il calcolo della resistenza di terra R _A per i diversi tipi di dispersore110
Tab. 5.5.7.2.1	Valori potenziali e tassi di asporto dei metalli comunemente usati130
Tab. 5.5.7.4.1	Combinazione di materiali per impianti di messa a terra con diverse condizioni di superficie ($A_{K}>100~x~A_{A}$)132
Tabella 5.5.8.1	Materiale, forma e sezioni minime dei dispersori135
Tabella 5.7.1	Distanza degli anelli e profondità della regolazione di potenziale144
Tabella 6.1.1	Sezioni per i conduttori equipotenziali150
Tabella 7.2.1	Gestione della protezione LEMP per nuovi edifici e per modifiche sostanziali della costruzione o dell'utilizzo di edifici158
Tabella 7.3.1	Attenuazione magnetica delle maglie in caso di fulminazione ravvicinata160
Tabella 7.3.1.1	Resistenza specifica ρ_{c} dello schermo per diversi materiali163
Tabella 7.3.1.2	? Tenuta alla tensione impulsiva163
Tabella 7.5.2.1	Portata di corrente impulsiva da fulmine richiesta per dispositivi di protezione da sovratensioni Tipo 1, in corrispondenza al livello di protezione e al tipo di impianto utilizzatore in bassa tensione171
Tabella 7.8.2.1	Simboli della classe scaricatori179
Tabella 7.8.2.2	Attribuzione della classe scaricatore ai passaggi di zona LPZ179
Tabella 8.1.1	Classificazione dei dispositivi di protezione secondo CEI, IEC e EN182
Tabella 8.1.7.1	Coefficiente di materiale k per conduttori in rame e alluminio con diversi materiali isolanti203
Tabella 8.2.1	Marcatura dei moduli di protezione BCT208
Tabella 8.2.2	Correnti nominali dei moduli di protezione BCT210
Tabella 8.2.3	Criteri di scelta per sistemi di misura della temperatura215
Tabella 8.2.5.1	Separazione dei conduttori di telecomunicazione e di bassa tensione (secondo EN 50174-2)226
Tabella 9.2.1	Dimensioni minime dei conduttori di terra per il collegamento dei pali di illuminazione nella zona $0_{\rm A}$ tra di loro e all'impianto dell'edificio231
Tabella 9.3.1	DEHNiso-Combi Set236
Tabella 9.3.2	Scelta materiale per impianto di terra e sistema equipotenziale239
Tabella 9.3.3	Protezione da sovratensioni per l'alimentazione elettrica241
Tabella 9.3.4	Protezione da sovratensioni per reti informatiche242
Tabella 9.3.5	Scaricatori di sovratensione per tecnica CMR242
Tabella 9.3.6	Scaricatori di sovratensione per apparecchi in campo242
Tabella 9.7.1	Protezione da fulmini e sovratensione per linee di segnale261
Tabella 9.7.2	Protezione da fulmine e sovratensioni per linee d'alimentazione 261
Tabella 9.9.1	Descrizione degli scaricatori268
Tabella 9.9.2	Scelta dei dispositivi di protezione268
Tabella 9.10.1	Descrizione degli scaricatori270
	Velocità massima di trasmissione dati275
Tabella 9.12.2	Valori relativi a capacità e impedenza in serie dei dispositivi di protezione da sovratensioni275
Tabella 9.12.3	Scelta dello scaricatore combinato a seconda del sistema di rete277

Tabella 9.12.4	Protezione da sovratensioni per interfaccia di segnale27	7
Tabella 9.12.5	Protezione da sovratensione per l'alimentazione elettrica27	7
Tabella 9.12.6	Protezione da sovratensioni per interfaccia di segnale27	8
Tabella 9.12.7	Protezione da sovratensioni per l'alimentazione elettrica27	8
Tabella 9.13.1	Protezione da sovratensioni per linee bus PROFIBUS DP/	
	PROFIBUS FMS27	19
Tabella 9.13.2	Protezione da sovratensioni per linee bus PROFIBUS PA28	30
Tabella 9.13.3	Protezione da sovratensioni per alimentazione elettrica28	31
Tabella 9.15.1	Esempio per trasduttore di misura temperatura28	39
Tabella 9.15.2	Dispositivi di protezione da sovratensioni per l'impiego nei	
	circuiti di misura e sistemi bus a sicurezza intrinseca29	10
Tabella 9.17.1	Selettività degli scaricatori Tipo 129	8
Tabella 9.17.2	Limitatore di sovratensione standardizzato Tipo 229	8

Tabella 9.17.3	Protezione da sovratensioni per allacciamenti alla rete fissa 298	3
Tabella 9.17.4	Protezione da sovratensioni per la tecnica di trasmissione298	3
Tab. 9.18.1.1	Scelta dei dispositivi di protezione da sovratensioni per impianti PV su edifici senza protezione contro i fulmini esterna30:	3
Tab. 9.18.1.2	Scelta dei dispositivi di protezione da sovratensioni per impianti PV su edifici con protezione contro i fulmini esterna e con rispetto della distanza di sicurezza s30:	3
Tab. 9.18.1.3	Scelta dei dispositivi di protezione da sovratensioni per impianti PV su edifici con protezione contro i fulmini esterna e senza rispetto della distanza di sicurezza s304	4
Tab. 9.18.2.1	Scelta dei dispositivi di protezione per centrali fotovoltaiche30:	7
Tab. 9.18.2.2	Dispositivi di protezione da sovratensione per rilievo ed elaborazione dati	3

328 BLITZPLANER www.